Prof. Gideon Grader awarded the Institut de France prize for developing the E-TAC process that enables splitting water into hydrogen and oxygen.
Prof. Gideon Grader from Israel’s Technion-Israel Institute of Technology was recently awarded the Grand Prix Scientifique research grant by the Institut de France for developing innovative green hydrogen technology.
The Institut de France, a nonprofit organization founded in 1795 that unites five French academies, encourages research, supports creativity, and funds many humanitarian projects.
Grader has developed a process — dubbed E-TAC — along with his Technion colleagues, which splits water into hydrogen and oxygen by decoupling the production of the two gasses. This is achieved by circulating electrolyte solutions at different temperatures through the electrodes.
The professor later developed unique electrodes that move continuously between the separated sites where the hydrogen and oxygen are produced simultaneously, allowing for the E-TAC process to be continuous and not an isolated action.
The scientists say the method will enable long-term operation at a low cost and easier scaleup to industrial level.
In 2019, green hydrogen company H2Pro was founded using the E-TAC technology. The 100-strong company has since raised over $100 million from venture capital funds, including Bill Gates’ BEV fund, TEMASEK, and Horizon Ventures. H2Pro was recently selected by BloombergNEF as one of the most promising companies for solving the climate change crisis.
Israeli food-tech startup More Foods has announced a new partnership with Tivall, a vegetarian frozen food brand owned by food giant Osem-Nestlé.
More Foods makes high-protein, high-fiber meat alternatives from pumpkin and sunflower seeds. Its products are served in over 100 Israeli restaurants as well as restaurants in the UK and France.
The startup says its high-protein product uses the seeds in a way that allows for textures and flavors that are not usually found in meat substitutes, mimicking the variety available for meat eaters.
The collaboration with Tivall, which is based on Kibbutz Lohamei HaGeta’ot in northern Israel, will allow More Foods to expand its distribution to meet the growing demand for clean, plant-based products.
This partnership marks Tivall’s first time working with a food-tech startup.
“We are proud to partner with the Osem-Nestlé Group and combine our unique product offering with their market accessibility,” said Leonardo Marcovitz, founder of More Foods.
“This collaboration represents an important milestone in our journey to broaden our market presence, reach a larger customer base, and further our mission to make nutritious meaty center-plate plant-based products more accessible to consumers worldwide,” he said.
More Foods was founded in 2019 and is headquartered in Tel Aviv.
The daily commute for many Israelis means long hours by bus or car, navigating a gridlocked central Israel – the heart of the country’s business sector.
Israel’s traffic jams are notorious. In 2021, the Organization for Economic Cooperation and Development (OECD) said that the country’s transportation infrastructure was in worse shape than most of its other members – and singled out the congestion on the roads as being especially egregious.
But Israel – with its strong tech ecosystem and ethos of innovation – has devised a futuristic solution to dodge traffic jams by sending people and parcels to their destination through the air in unmanned aerial vehicles (also known as UAVs or drones).
Dronery’s UAV is designed to carry people through the air for distances of up to 30km (Mark Nomdar)
And this month, that solution moved even closer to reality, with the Israel National Drone Initiative (INDI) testing drones that can carry both passengers and goods.
INDI has been in development for the past four years, bringing together a variety of government bodies, including the Ministry of Transport, the Israel Innovation Authority (IIA) and the Civil Aviation Authority of Israel (CAAI).
The IIA says the drone initiative is preparing the groundwork for the regular use of these unmanned flying vehicles in Israel, building the technology, regulation and infrastructure ahead of their introduction.
The aim, it says, is not only to alleviate the human and environmental pressure on Israel’s roads, but also offer more efficient services and give the country’s high-tech sector a competitive edge on the global stage.
Israel has invested 60 million shekels (approx. $16.5 million) in the project so far.
This month’s tests involved 11 companies working in drone operation, including two whose aircraft are intended to transport people.
The companies carried out trial missions at multiple locations across the country. And Daniella Partem, who heads Israel’s drone project as part of her leadership role at the IIA, says her team was pleasantly surprised at how swiftly they were making progress.
The tests included groundbreaking autonomous flights by a pair of Israeli companies whose eVTOL (Electric Vertical Takeoff and Landing) craft can carry two people at a time.
“We thought it would take longer to fly the eVTOLs in Israel,” Partem tells NoCamels, explaining that no other country is working in such an accelerated way in this field.
“Our main objective is to have this competitive, safe ecosystem operating in Israel, and as opposed to other countries, we’re very focused and have a managing aerial system.”
The two companies planning to carry passengers are Dronery, whose Chinese-made, Israeli-adapted craft can carry 220 kg in cargo and fly as far as 30 km, and AIR, whose homegrown AIR ONE craft can carry up to 250 kg and for a far greater distance of 160 km.
Their test flights involved taking off and landing in urban areas and the transportation of heavy cargo. Both sets of tests were conducted successfully using mannikins.
Dronery tests its UAV designed to carry people from one location to another (Courtesy)
The government says that the test flights will continue around the country for the next two years, with the aircraft flying long distances of up to 150 km while increasing the weight of their payload in order to prepare for passengers.
For Partem, this is just the beginning of a transportation revolution that could even see drones helping in life or death situations, such as delivering rare medications or ferrying patients between hospitals in emergencies. And the program is advancing satisfactorily.
“We’ve managed to move forward pretty quickly into creating this new ecosystem for drones and eVTOLs. And this is a very important milestone for us and the project; we’ve done over 19,000 sorties, in different places in Israel – up north, down south, Tel Aviv, Jerusalem,” she tells NoCamels.
“We believe that this whole technology is something that can really help solve urgent problems such as traffic and such as air pollution, and help us move things from place to place in a more efficient and safe way,” Partem says.
Safe Skies
With an active air force due to Israel’s security situation, the use of drones in the country’s heavily defended airspace inevitably involves some close coordination with the military.
The technology to manage the airspace and the “corridors” (think roads in the sky) that the aircraft will be using is currently being developed, Partem says.
Israel has tasked two companies with managing the airspace and, according to Partem, both will be employing the Unmanned Aircraft System Traffic Management (UTM) devised by the United States.
Unlike in other countries, in Israel the airspace management will be overseen by the government, but the actual operation of the drones will be open to many companies, creating what Partem calls a “competitive ecosystem.”
Each company will have to register with the authorities and limit themselves to a predetermined route but will ultimately be responsible for their own craft and their contents. The UTM, Partem says, “only helps them fly together in one space.”
Partem is confident in the software and the hardware that comprises the safety measures in place for all bodies and interested parties, and cites an example of these security steps in action.
“We had a helicopter flying into the airspace where the drones are flying. And you could see how the drones made their way around the helicopter. We can really see that we can have a safe environment,” she says.
Three researchers have been awarded top honors in the EuroTech Future Award, beating out 34 other participants. The jury evaluated the impact of the candidates’ work on achieving global sustainability goals, the excellence of their research, and their ability to effectively communicate their research to non-experts, including policymakers and citizens.
Anders Bjarklev, President of the Technical University of Denmark and President of the EuroTech Universities Alliance, emphasized the importance of the research community in addressing the challenges faced by Europe and global society. He highlighted the passion, pursuit of knowledge, and innovative spirit of the talented young researchers from the six universities involved in the EuroTech Future Award.
The third prize was awarded to Dinesh Krishnamoorthy, an assistant professor at Eindhoven University of Technology. His research focuses on applying artificial intelligence in medical research, specifically in personalized insulin dosing for diabetes care. Krishnamoorthy’s work aims to develop AI algorithms that can automatically determine the optimal insulin dosage for individual patients, making diabetes management more affordable and accessible.
The first prize went to Charlotte Vogt, an assistant professor at the Israeli Technion. Vogt’s research centers around carbon dioxide hydrogenation catalysis. She believes that catalysts play a crucial role in addressing global warming by converting CO2 into useful materials or fuels. Vogt’s work focuses on developing new and improved catalysts through spectroscopic experiments to enhance the efficiency of CO2 conversion processes.
The second prize was awarded to Zongyao Zhou, a postdoctoral scientist at EPFL in Switzerland. Zhou’s research focuses on membrane-based technologies for wastewater recovery and the exploitation of green energy. He has developed a microporous polymer membrane that can effectively remove antibiotics and heavy metal ions from drinking water and extract lithium ions from seawater. Zhou’s research aligns with the United Nations’ Sustainable Development Goals, particularly in promoting clean water and sanitation and affordable and clean energy.
The EuroTech Universities Alliance, a strategic partnership of leading European science and technology universities, aims to build a strong, sustainable, sovereign, and resilient Europe. The alliance’s partners contribute their excellence in research and education and actively engage in vibrant ecosystems and service to society. Together, they collaborate to accelerate research in high-tech focus areas and advocate for change, with a strong presence in Brussels.
The EuroTech Future Award recognizes the outstanding contributions of young researchers from the EuroTech Universities Alliance in securing a sustainable future. The winners’ research demonstrates their commitment to addressing global challenges and making a positive impact on society.
How can personalized and more effective treatment for insulin requirements be achieved through N’s accurate predictions?
N accurately predict insulin requirements for individual patients, leading to personalized and more effective treatment.
The second prize went to Lavinia Heisenberg, a PhD candidate at the Technical University of Munich. Heisenberg’s research revolves around the development of sustainable materials for construction. She is working on creating bio-based composites that can replace traditional, resource-intensive materials like concrete and steel, thus reducing environmental impact without compromising structural integrity.
The first prize was awarded to Jean-Paul Moreau, a postdoctoral researcher at École Polytechnique Fédérale de Lausanne. Moreau’s research focuses on the development of sustainable energy storage solutions. He has been working on a new type of flow battery that uses abundant and non-toxic materials to store renewable energy. This technology has the potential to revolutionize the energy storage sector and facilitate the widespread adoption of renewable energy sources.
The EuroTech Future Award recognizes the importance of research in driving sustainable development and addressing global challenges. Through their innovative work, these young researchers have shown their commitment to finding solutions that can have a real impact on society. Their ability to effectively communicate their research to policymakers and citizens is also crucial in ensuring that their findings are translated into practical applications and policies.
The EuroTech Universities Alliance, consisting of six leading technical universities in Europe, plays a vital role in fostering collaboration and knowledge exchange among researchers. The EuroTech Future Award is just one example of how the alliance supports and recognizes outstanding research that contributes to a sustainable future.
With the recognition and support provided by the EuroTech Future Award, these three researchers have an even greater opportunity to further develop their work and make a meaningful contribution to achieving global sustainability goals. Their dedication and expertise serve as an inspiration to the research community and demonstrate the potential of science and technology in shaping a better future for all.
In a 1931 essay, Winston Churchill wrote about how he sees the future of food production: “We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium,” he wrote.
Fast forward some 90 years, and Churchill’s prediction is coming true, thanks in part to Israeli food-tech company Aleph Farms, which has developed a unique method to cultivate steak meat from isolated cow cells.
First to develop cultured steak
“We’re the first company that has managed to develop cultured steak. Not ground beef or nuggets — an actual steak,” says Aleph Farms’ Senior Manager of Marketing Communication Yoav Peer.
Aleph Farms’ steak developed from cow cells. Photo by Yulia Karra
The company’s primary vision is not dissimilar to that of Churchill — to advance food security through the ability to produce meat independent of climate change and dwindling natural resources.
The company grows only the edible parts of cows, using stem cells to generate meat. The focus is solely on beef for now, because of the taxing environmental impact of cattle-raising and because beef is considered the highest quality type of meat.
The Rehovot-based startup, established in 2017, now boasts 150 employees, the majority of whom work in R&D.
And it shows. In Aleph Farms’ offices, biologists and biochemists pop from room to room in white coats, giving a sense that you are inside one giant medical lab.
“Aleph Farms was established as an initiative of Strauss Group [one of the largest food manufacturers in Israel] and Technion-Israel Institute of Technology, with the cooperation of private investors and the government,” Peer tells ISRAEL21c.
Cultured steaks in supermarkets by 2026
Aleph Farms has been generating quite a buzz recently. It became the first to cultivate beef in space in 2019, and even boasts Hollywood star and environmental activist Leonardo DiCaprio as one of its investors.
Aleph Farms’ Talent Acquisition Manager & Human Resources Business Partner Orit Berman with Israeli Arabs participating in the company’s social action program. Photo courtesy of Aleph Farms
The company is also part of a social-action campaign that works to integrate Israeli Arabs into the country’s high-tech sector.
The actual product is expected to hit the market by the end of this year, starting with select restaurants once Aleph Farms receives regulatory approvals from Israeli Health Ministry and Singapore’s Health Agency.
Why those two countries?
“Israel and Singapore share a lot of challenges related to food security,” says Peer.
“They don’t have enough resources to feed the local population, so they’re looking at cultivated meat that could be produced anywhere without taking up land and water needed for cattle.”
In the initial stages, Aleph Farms will produce roughly 10 tons of cultured steak per year, and in the future establish additional production facilities. “The goal is to get to supermarkets by 2026,” Peer says.
One of the biggest challenges is to produce at a reasonable cost.
“It requires innovation in production to make the process more efficient. So, in the beginning it is going to be priced similarly to premium beef. But we hope to reduce the cost within a few years from our launch, until we reach price parity with the broader beef market,” says Peer.
From a fertilized egg to a steak
The first batch of cells the company worked with came from a fertilized egg of a cow named Lucy from California. Lucy apparently was extremely fertile and genetically superior compared to “average” cows.
“Lucy has children all around the world,” Peer says. He adds that picking a donor is extremely important in order not to end up with “a full tank of problematic cells” from which the meat would be cultivated.
But how does a fertilized egg from a living cow end up as a beefsteak? To answer that question, we turn to Director of Differentiation at Aleph Farms Natali Molotski.
Director of Differentiation at Aleph Farms Natali Molotski. Photo by Yulia Karra
“To undergo that process, cells need to take on specialized roles, not just multiply. We start working with cells when they are pluripotent,” she says.
Most of us know pluripotent cells by their “mainstream” name — stem cells. Stem cells can become any type of cell, under the right guidance.
“You take an embryonic cell and guide it to be whatever you want — muscle, connective tissue or fat cells. Getting the cells to differentiate in the right way is what my team focuses on,” Molotski tells ISRAEL21c.
“We know how this process happens in the cow’s body, but it takes nine months or so. We need to replicate that process in a few days to reduce production cost. We had to learn to mimic the natural process of cell development, while dealing with regulatory constraints because at the end of the day people are going to eat it. It’s a huge challenge.”
Slaughter-free
The trickiest aspect in the development of cultured meat is recreating the texture, such as tissue and blood vessels. “You need to feed the cells the right food in order for them to have the same taste as animal meat.”
The cells are fed an “animal cell culture media” developed exclusively by Aleph Farms — and it is, well, also cultured.
“The common media consists of serum that is derived from cows. So we developed unique media at this company that is without serum, and later we got rid of all animal components [in cell food],” says Molotski.
“When you work in tissue culture with cells, you don’t even think about it. But when you’re producing it for cultured meat, you can’t feed the cells something that comes — although indirectly — from animal slaughter.”
Even with the most exclusive and expensive food, some cells will not grow up to be steaks.
“We have a machine here that was used for PCR coronavirus tests,” says Molotski. “It helps us extract the DNA and see which cells are more suitable for muscle tissue, for example, and which will not make it to the next round of development.”
Why not simply extract grown cells from a specific body part of an animal and cultivate the meat that way, saving time that it takes to grow a cell from scratch?
“That would be quicker and cheaper,” she concedes. “But, these cells die very quickly. Our cells can be in use forever, so you don’t have to go each time and extract new ones. You also need to take into consideration the issue of genetic stability.”
Although the company now is hyper focused on cultured meat, Aleph Farms’ ultimate vision is lab cultivation of all animal products “from leather to collagen,” adds Peer.
atalysts spur the world’s economy, but they still hold many mysteries. “One-third of global gross domestic product relies on catalysts, and yet do we really understand how they operate under working conditions? Absolutely not,” says Charlotte Vogt, an assistant professor of chemistry at the Technion—Israel Institute of Technology.
Vogt is determined to fill that knowledge gap. Her research reveals the inner workings of catalysts that could tackle climate change by decarbonizing our energy systems and industrial processes, and she’s driven by the urgency of the challenge. “We have to come up with new catalytic systems at record speed, and how are we going to do that if we don’t really understand them?” she says.
Most of the common reactions in the chemical industry involve passing gases or liquids over solid catalysts at high temperatures or pressures. To improve the performance of these heterogeneous catalysts, chemists try to understand the mechanism of the reaction going on at the catalyst’s surface. Traditionally, this approach has involved using spectroscopic and other techniques to study simplified versions of the reaction systems—perhaps focusing on a single facet of a catalyst crystal at extremely low pressure so that just a few reactant molecules adhere to its surface.
Despite the insights they have provided, these model systems are completely different from the conditions of industrial reactions and can give a misleading or incomplete view of how the catalyst works. So Vogt instead studies catalysts in their real-world operating environments, known as operando in chemical parlance, and in real time, which poses enormous experimental challenges.
A catalyst particle can have many different reaction sites that change during the reaction. And the catalyst is surrounded by a blizzard of reactant and product molecules, most of which are not undergoing the reaction in question at any given moment. “You’re sometimes looking for spectroscopic signals that are like a needle in a haystack,” Vogt says. “So we’re developing techniques to elucidate those tiny but important signals and distinguish them from everything that is not important.”
“We have to come up with new catalytic systems at record speed, and how are we going to do that if we don’t really understand them? ”
Charlotte Vogt, professor, Technion—Israel Institute of Technology
Her team studies catalysts using X-rays at synchrotron facilities, for example, or infrared spectrometers in Vogt’s lab. Then the researchers use machine learning and pattern recognition techniques to comb through the terabytes of data. They also design specialist reactors that can operate at realistic conditions while allowing spectroscopists to peer inside the heart of the reaction.
Vogt is applying these techniques to the reactions of small molecules, including carbon dioxide and ammonia, that have a huge global impact. In addition to studying conventional heterogeneous catalysts, she’s also interested in developing operando techniques to study electrocatalytic reactions that produce NH3 or convert CO2 into fuels and other useful products. Deployed at an industrial scale, these reactions could take advantage of the growing availability of renewable electricity.
In 2021, Vogt established her research group at the Technion, where she has joined the new Stewart and Lynda Resnick Sustainability Center for Catalysis. “She mixes a deep knowledge of science with a vision of how to apply it to real-world problems,” says Ilan Marek, the center’s director. “She was a perfect fit.”
Vogt has always understood the power of chemistry to change the world. Her father, Eelco Vogt, was the global R&D director for catalysts at chemical company Albemarle, “so I had a really good role model at home,” Charlotte Vogt says. After undergraduate and master’s degrees at Utrecht University, she stayed on for a PhD with Bert M. Weckhuysen, a leading proponent of operando spectroscopy. “She is very driven, she knows how to organize things, and she has a real passion for science,” Weckhuysen says.
Her PhD research included dissecting the Sabatier reaction, which typically uses a nickel catalyst to convert CO2 and hydrogen into methane and water. Improving the efficiency and selectivity of that process could offer a way to use industrial CO2 emissions as a raw material for storing renewable energy in chemical fuels. Vogt’s spectroscopy work revealed how the nickel catalyst particles’ size and structure affected the reaction and how metal oxide supports beneath the nickel particles influenced the products formed.
Weckhuysen and Eelco Vogt are old friends, so Charlotte Vogt was determined to forestall any suggestions of favoritism and worked hard to establish herself as an independent scientist. “In fact, during my PhD I didn’t talk to my dad about my science. Not one word,” she says.
Now that Vogt has her own lab, though, she’s happy to discuss the trials and tribulations of being an assistant professor with her father and has even collaborated on a paper with him. “He’s an amazing support system to have,” she says.
Aleph Farms, which a Technion professor co-founded, continues to break more records in this latest development
The first company to grow steaks directly from the cells of cows has now received the first halachic ruling regarding the kosher status of cultivated meat.
Chief Rabbi of Israel, David Lau, made the announcement yesterday (Wednesday, January 18th), following an examination of the production methods in the company’s laboratory and speaking with experts in the field.
Rabbi Lau noted, however, that if it is marketed as meat or is “similar to meat in taste and smell”, it should not be mixed or consumed with dairy products.
Co-founded by Technion Professor, Shulamit Levenberg, from the Biomedical Engineering Faculty at the Technion Israel Institute of Technology and backed by Leonardo DiCaprio, Aleph Farms has – to date – raised $120 million in funding. It is awaiting marketing approval for its first product – Minute Steak – before it enters the market for the first time.
Other notable animal-free produce startups linked to the Technion include SavorEat, a company that produces 3D-printed burger patties via a robot chef using ingredient cartridges, SuperMeat, which takes cell cultures from chickens and Imagindairy, which develops real milk in the lab without harming animals.
Aleph Farms hopes to launch its Minute Steak in Israel this year, followed by other countries around the world next year.
Meanwhile, Professor Levenberg is working on a host of other exciting innovations, including genetically engineering muscle tissue to cure type-2 diabetes and treating spinal cord injury patients with exosome therapy, which contains three times the amount of growth factors of stem cells, is less invasive and doesn’t rely on human donors.
The Churchill Awards Gala Dinner was back with a bang after a long hiatus
An incredible quarter of a million pounds was raised for Technion UK during its first gala dinner in three years.
Over 300 people enjoyed a Tony Page catered event at the Royal Lancaster Hotel in London on Sunday night.
Nobel laureate, Professor Dan Schechtman, who defied critics for his “off-the-wall theory” and the went on to claim the Nobel Prize for Chemistry, delivered the illuminating keynote speech. He spoke about the importance of education and gave examples of his contribution to help the Technion become the powerhouse of Israel’s high-tech society having trained most of Israel’s engineers who helped build the country.
Baroness Ruth Deech DBE, a British academic, lawyer, ethicist and politician received the prestigious Churchill Award and members of the Technion Chamber Orchestra provided entertainment, wowing the room with a violin medley of classical pieces.
For the first time,guests were invited to choose exactly where their donation went: The Program of Excellence for fast-tracked students, the Defence and Aerospace department, the Sustainability and Grand Technion Energy Program and research into Parkinson’s and other neo-generative diseases.
Baroness Ruth Deech DBE said: “I cannot tell you how delighted I was with the dinner and the award – more than I deserve! It is a great piece of art, and I shall treasure it. The dinner was beautifully organised and conducted and it was a privilege to hear Dan Shechtman.”
CEO of Technion UK, Alan Aziz, said: “I’m delighted that after three long years we have been able to host another big gala dinner with amazing speakers and guests!”
And why H2Pro, set up by Technion Professors is the Israeli startup we all need to know about!
We are living through an exciting part of the global journey to reducing carbon emissions, thanks to a transition to clean energy that’s gaining serious momentum.
Between the ongoing economic recovery from Covid-19 and the war in Ukraine – highlighting the need for the Western world to become energy independent – investments in the global renewable energy market are expected to increase significantly.
By 2040, around 10% of the world’s primary energy demand could be replaced by hydrogen, while the global hydrogen market is expected to more than double by 2050.
Israel, as one example, is currently aiming for 30% of its energy to be renewable by 2030 – a considerable increase on the 2020 total of 7%.
But its success relies on many factors, such as creating more storage, reducing the reliance on fossil fuels and making energy systems more flexible and resilient.
As the most abundant element in the universe, hydrogen is a portable, scalable fuel that can serve as a lifeline to sectors that are difficult and costly to electrify, such as long-haul trucking, maritime shipping and air travel.
As a zero-carbon duel, it is also an environmentally-friendly option for high-heat industrial processes, such as steel and cement.
The one to watch out for
While others are developing in the market, H2Pro is at the forefront of making these targets a reality, thanks to its revolutionary method for efficiently splitting water into its two components of hydrogen and oxygen.
Using electricity, the elements are generated separately, unlike conventional electrolysis, enabling a 95% system efficiency.
Founded by Professors Gideon Grader and Avner Rothschild and Drs. Hen Dotan and Avigail Landman of the Grand Technion Energy Programme in 2019, the company, which counts Bill Gates as an investor, has laid the cornerstone of its first production facility, which, when completed, will produce affordable green renewable energy at scale.
Technion, Israel’s Institute of Technology is the oldest university in the country and one of the leading universities in the world.
Its Faculty of Biotechnology and Food Engineering is a unique department where expertise from many disciplines comes together.
Israel is a global centre of food and agri-tech, producing remarkable innovations, and attracting astonishing levels of investment.
But, like anywhere else in the world, there are problems; food waste, overfishing, unsustainable practices, feeding a growing population. Israel is facing all of the above and the issues are taxing its brightest minds.
The Food Matters Live Podcast has looked at innovation in Israel before, but in this episode we are going to get a unique insight into one of the world’s leading research centres.
The Faculty of Biotechnology and Food Engineering is led by Professor Marcelle Machluf, a remarkable woman who was named Lady Globe Magazine’s ‘Woman of the Year’ in 2018.
Her work has been included in the Israel Ministry of Science and Technology’s list of ‘Israel’s 60 Most Impactful Developments’.
During this episode of the Food Matters Live Podcast, we learn about the new Carasso FoodTech Innovation Center being built at Technion.
It has an R&D centre, packaging laboratory, kitchens, tasting, and evaluation units.
Professor Machluf says: “It’s not enough to just sit in the classroom. Our students need the right equipment to develop their ideas and they need to be prepared for whatever the future holds.”
Listen to the full episode to hear her views on the importance of building relationships to drive innovation, learn more about the work being done at Technion, and how the institute is going about developing a centre for ideas that haven’t yet been born.
Professor Marcelle Machluf, Dean of the Faculty of Biotechnology and Food Engineering, Technion
Professor Marcelle Machluf is renowned for her cutting-edge cancer and drug delivery research, and her work in tissue regeneration.
She is head of the Technion’s graduate Interdisciplinary Program in Biotechnology, a member of the Affiliate Engineering Faculty of the Technion Integrated Cancer Center, and former deputy executive vice president for research for the Technion’s Pre-Clinical Research Authority. She also works closely with the Russell Berrie Nanotechnology Institute.
Professor Machluf is developing a targeted drug delivery system using modified stem cells called Nano-Ghosts to home in on tumours, unleashing its therapeutic load at the cancer site.
She is also developing scaffolding for tissue engineering of the pancreas, heart, and blood vessels, and developing carriers for cell delivery with applications for treating diabetes and more.
She has a laboratory at Nanyang Technological University of Singapore, where she is working on a leading tissue regenerative project.
Professor Machluf has authored book chapters and more than 80 peer-reviewed journal papers in leading journals. Her work has been cited more than 2,800 times. She has six national patents and two approved international patents in the fields of drug delivery and tissue engineering.
She is the recipient of many honours including the Alon Award for excellence in science, the Gutwirth Award for achievements in gene therapy, the Hershel Rich Technion Innovation Award, and the Juludan Research Prize for outstanding research.