The study is related to a problem in AI and robotics called autonomous decision-making under uncertainty.

Researchers at the Technion – Israel Institute of Technology found a way to simplify decision-making and problem-solving under uncertainty in a way that reduces the amount of information computers need to analyze.

A new peer-reviewed study published in the International Journal of Robotics Research, led by Prof. Vadim Indelman, who heads the Autonomous Navigation and Perception Lab (ANPL) at Technion’s Faculty of Aerospace Engineering, and Khen Elimelech, shows the feasibility of reducing the amount of time for computers to process information without compromising the success of completing a function.

“We demonstrate that we can significantly reduce computation time, without harming the successful execution of the task,” the researchers said. “We also demonstrate that computation efforts can be reduced even further if we accept a certain loss in performance loss that our approach can evaluate online. In an age of self-driving cars and other robots, this is an approach likely to enable autonomous online decision making in challenging scenarios, reduce response times, and achieve considerable savings in the cost of hardware and other resources.”

The study is related to a problem in AI and robotics called autonomous decision-making under uncertainty, which concerns the capability of AIs to complete tasks reliably and autonomously over time in an unpredictable environment.

Technion noted that autonomous agents often do not have access to the variables related to a particular problem and instead function based on a “belief” based on probability models and measurements.

Illustrative image of AI. (credit: PIXABAY)

Belief space planning

A major area of research in the new study was computationally efficient decision-making under these conditions, called belief space planning. In order to solve this problem, an AI must weigh the costs and benefits of a potential action, which requires the researchers to predict how the “belief” will change over time.

The findings may help researchers solve decision-making problems using simplification and show that there are ways to save considerable amounts of computation time without a loss of accuracy.

Forsight Raised $10 million in seed funding in March 2021.

Israeli medtech startup ForSight Robotics is developing a surgical robotic platform to deliver what it describes as high precision and cost-effective vision-saving surgery. Forsight just raised $55 million in a Series A round of funding led by The Adani Group alongside existing investors Eclipse Ventures and Mithril Capital.

Founded in 2020 CEO Daniel Glozman, Ph.D., Joseph Nathan, M.D. and Moshe Shoham, Ph.D, Forsight declares that its mission is to transform the practice of ophthalmic surgery through a next generation robotic platform combining “state of the art robotic microsurgical technology, advanced visualization technologies, and next generation cognitive computing methods.”

Joseph Nathan previously directed healthcare commercialization at the Technion Israel Institute of Technology, where he forged partnerships worth over $1 billion with global pharmaceutical and med-tech companies. Daniel Glozman has specialized in robotics for medical applications for over 20 years, heading R&D at Medtronic Ventor Technologies, Magenta Medical, Diagnostic Robotics, and Guide-X — which he also founded.

Israeli medical professionals have been behind many new procedures to save people’s vision over the years. Losing your vision is one of the most frightening things which can happen to people. Israeli startup OrCam produces new technology for the blind and other people with visual deficiencies. Its MyEye is wearable technology that can give eyesight to the blind. But it does not heal them.

Forsight Robotics, however, tries to heal blindness. The company explains that many of the leading causes of blindness worldwide can be prevented through timely surgical procedures. Ophthalmic microsurgery is complex and challenging, requiring many years to master, and there is a shortage of trained ophthalmic surgeons to meet the demand worldwide. Creation of a robotic surgical platform will allow one to deliver consistent excellent results while scaling up ophthalmic surgery to solve the problem of preventable blindness worldwide.

“These are exciting times that will enable the transformation of ophthalmic surgery from art to science,” Forsight’s Dr. Joseph Nathan once declared.

“We are thrilled to bring robotics into the world of ophthalmic surgery,” Dr. Glozman once said. “Our goal is to democratize this highly sophisticated procedure, enabling patients around the world to easily access the treatment that can restore their vision.”

The Technion has received its first human MRI research scanner made by Siemens. The device will operate within the framework of the May-Blum-Dahl Human MRI Research Center in its own 200 square meter facility in the Technion’s Joseph Center for Industrial Research.

The new Center, operated by the Faculty of Biomedical Engineering, will be used by researchers, professors, and students to carry out interdisciplinary research in a range of scientific and medical fields, as part of the Technion’s commitment to scientific excellence and the advancement of human health.

MRI is an important technology for structural and functional imaging of tissues and internal organs including the brain, is non-invasive, and avoids exposure to ionizing radiation. According to the Center’s manager, Dr. Dafna Link-Sourani of the Faculty of Biomedical Engineering, “the MRI study is characterized by being interdisciplinary and involving various engineering faculties (electrical, computers, mechanical, and material) and sciences (physics, chemistry, and biology), and of course medical research.”

According to Prof. Moti Freiman, who is the Center’s academic director, “Many researchers at the Technion have been waiting for the arrival of this essential research tool, and until now have been using other MRI centers for their research. The device will be available to researchers from a wide range of disciplines at the Technion and will also be used by industry researchers who want to deepen their R&D. The uniqueness of the new Center is its location within an engineering faculty, in an institute which is recognized as a global leader in innovative research, with a wide range of engineering fields. This will significantly help to advance innovation at the forefront of research and technology and to develop solutions to important clinical problems. There is no doubt that Siemens is pleased to have brought us the scanner, as we hope that Technion researchers can offer significant improvements in its performance.”

The commencement of the new center’s activity, expected later this year, is the result of ongoing fundraising led by Technion management, together with several Technion researchers: Professor Shulamit Levenberg, former dean of the Faculty of Biomedical Engineering; Dr. Moti Freiman, and Dr. Firas Mawase of the Faculty of Biomedical Engineering; Professor Tzipi Horowitz-Krauss of the Faculty of Science and Technology Education, and Dr. Yoad Kenett of the Faculty of Industrial Engineering and Management. 


This Center will be the first human research MRI center of its kind in the north of the country and is also set-up to explore children’s development. To that end, it includes a mock scanner, making it possible to acclimate children and infants to the imaging process prior to entering the actual device.

Netafim analysis shows corn grown with drip irrigation releases 53% fewer carbon emissions compared to flood-irrigated corn.

Corn is the third largest plant-based food source in the world and the most important crop in the United States, where 1.2 billion metric tons of corn were produced last year.

Corn is also cultivated in China, South America, India, Ukraine and across Europe, as food for both humans and livestock, as a biofuel and as a crude material for industrial purposes.

Now, results of a Life Cycle Analysis study show that the environmental impact of all those cornfields is significantly reduced by the use of drip irrigation as opposed to flood or sprinkler irrigation.

The study was conducted by EcoChain during 2020 for Israel’s Netafim, the global leader in sustainable precision irrigation solutions.

Highlights of the study:

  • Corn grown with drip irrigation releases 53 percent fewer carbon emissions compared to flood-irrigated corn and 39% fewer carbon emissions compared to sprinkler irrigation.
  • Drip-irrigated corn requires 24% less fertilizer than when it is grown with flood irrigation, and nearly 17% less fertilizer than when it is grown with sprinkler irrigation.
  • Drip-irrigated corn produces 45% more per kilograms per hectare when compared to flood, and 23% more when compared to sprinklers.

An earlier study showed that rice grown using Netafim’s drip irrigation technology out-produces conventional paddy rice farming, uses 70% less water, and diminishes methane emissions to almost zero.

“We’ve been showing the world how to grow more with less for nearly 60 years and our pioneering technology is now critical to mitigate the impacts of climate change,” said Netafim Global Chief Sustainability Officer John Farner.

“Today, farmers are not only challenged by record-high energy and fertilizer costs, but also increased pressure to reduce their overall environmental footprint, all while producing our global food supply,” said Farner.

“Adoption of precision irrigation for corn, along with other crops around the world, is critical to stabilize farmer livelihoods, reduce the carbon footprint of farming, and ensure a food-secure future.”

With 33 subsidiaries and 17 manufacturing plants worldwide, Netafim offers customized irrigation and fertigation solutions to millions of farmers, from smallholders to large-scale agricultural producers, in over 110 countries.

Israeli medical device company SoniVie, announced on Sunday that it received Investigational Device Exemption (IDE) approval from the US Food and Drug Administration for its REDUCED1 (Renal Denervation using Ultrasonic Catheter EmitteD energy) pilot study to treat resistant hypertension patients with renal artery denervation using its proprietary therapeutic intra-vascular ultra-sound system, or TIVUS. 

Renal denervation with TIVUS is a minimally invasive procedure that uses high-frequency non-focused ultra-sound energy to burn away nerves in the renal artery. The TIVUS catheter is inserted into the pulmonary artery and selectively damages nerves afflicted by the disease without touching vessel walls or damaging adjacent tissues. This causes a reduction in the nerve activity, which decreases blood pressure and is meant for patients who suffer from resistant hypertension.

Resistant hypertension is defined as blood pressure that remains higher than 140/90 mmHg despite the use of three hierarchical classes of antihypertensive medications at their most appropriate tolerated doses. The condition affects millions of people around the world, increasing the risk of heart attack, stroke, and kidney failure. 

Founded in 2014, SoniVie has developed a first-of-its-kind ultra-sound denervation platform with active programs establishing nuanced therapeutic solutions for pulmonary hypertension denervation, renal artery denervation for resistant hypertension, and lung denervation for obstructive pulmonary disease with chronic bronchitis.

“We are very pleased that the FDA has approved the REDUCED1 study,” said Christian Spaulding, chief marketing officer of SoniVie. “Sites initiation has started, and many clinical teams have responded very favorably about participating in the study.

“There is a significant number of patients that may benefit from our technology and we are genuinely happy for this important step towards the introduction of TIVUS in the US,” he added. “There is a lack of effective therapeutic solutions for patients suffering from resistant hypertension, and physicians are looking forward to a safe, effective and easy to use device treatment.” 

“This is a significant US regulatory milestone for SoniVie, starting the feasibility study using the ultra-sound ablation platform in the US for the renal denervation indication,” said Tomaso Zambelli, CEO of SoniVie. “This is a major step and priority in the company’s history.” 

On this World Blood Donor Day, let’s explore some Israeli tech that is making a difference to one of our most vital components: our blood

Hematological awareness is important as body vitality is exclusively dependent on blood flow. Blood is our natural producer of oxygen and carbon dioxide, and it is also a key mechanism for medical identification. For decades, doctors have prioritized blood analytics and testing as these results present in-depth information regarding diagnostics, treatment methods, and one’s overall physical state. Blood is as much the cure as it is the cause– blood donations are organized worldwide to act as a remedy for the shortage of blood and blood products that can single-handedly save hundreds of lives. Here in Israel, MedTech’s innovative efforts have always been advanced, yet amidst the effects of COVID-19 and how it continues to modify all spheres of society, Israeli MedTech innovations are at an all-time high. With the focus strictly on blood analytics, Israel’s start-up environment has pushed forth incentives and actions that have seemingly revolutionized how blood can be analyzed, detected, and measured. Here are some Israeli startups that play a role in hematology solutions.

PixCell

Blood diagnostic information, in most cases, does not do enough to create an effective impact on immediate health solutions and products. The devices and technologies that have been used thus far do not provide doctors and patients with substantial information when it matters most. Moreover, real-time blood testing is not accessible to everyone which presents numerous implications when patients are in emergencies. These obstacles have disrupted medical efforts for decades as there is a pressing need for in-depth, easily accessible blood diagnostic tools. In an accidental discovery made by a team of researchers at the Technion (Israel Institute of Technology), Viscoelastic Focusing (VEF) has been recognized as the saving grace toward efficient cell analytics. The Israeli startup PixCell has created the HemoScreen that uses advanced technology making use of VEF potential. This product uses a disposable cartridge with specific reagents to elicit a Complete Blood Count test. HemoScreen does not require maintenance or calibration and is versatile to fit the precise needs of its user.

PixCell was founded in 2008 with a keen focus on simplifying and regularizing real-time blood testing worldwide. Their research and entrepreneurial staff have surpassed company expectations with the discovery of Viscoelastic Focusing (VEF), paving a way for pivotal advancements in hematological efforts. Their team consists of Avishay Bransky (CEO, Co-Founder), Prof. Max Herzberg (Co-Founder), Armin Schon (CCO), Hanan Ben-Asher (COO, BD Manager), Mark Erez (CFO), Yaara Ben-Yosef (Director of RA and Clinical Affairs), and Eitan Hod (Director of QA and RA). PixCell has raised over $7 million in grant funding from the European Commission, the International Health-Tech Pilot Program, and the Israel Innovation Authority. In 2021 PixCell was acquired by Soulbrain Holdings.

RedC Biotech

The global supply of red blood cells has seeped far under worldwide medical demands. This shortage has served as a detriment to medical interventions such as trauma, childbirth, operations, chronic illness, cancer, and the list goes on. Red blood cells are the oxygen-carrying capacity of the body which is why 120 million blood units are donated each year, yet there is still a concerning decrease in these donations. Blood drives and donation sites, although they function as a temporary solution, are still not enough to compensate for the urgency in transfusion methods, productions, and resources. The Israeli startup RedC Biotech has initiated a “one blood type fits all” method with RedC Universal Red Blood Cell Transfusions. This product is suitable for almost every patient and provides a uniform potency. It is pathogen-free and donor free and also eliminates undesirable blood components as well as additional hospital testing.

Credit: RedC Biotech

RedC was founded in Haifa in 2015 by Dr. Ari Gargir. Over the past couple of years, the company has received $1.4 million in pre-seed and seed funding from PipelBiz. Their revolutionary technology addresses issues associated with industrial red blood cell production, and cost reductions. From the lab to global production, Red C Biotech is eager to scale the count of red blood cells to save lives worldwide. RedC has a small employee base but is growing in accordance with its production timeline.

Improdia

Current diagnostic tests cannot distinguish between acute and chronic inflammation, as well as monitoring immune functions that are pivotal for personalized treatment methods. With Improdia’s array of Unique BioMarkers, the innovative diagnostic company has developed a simple way to supervise inflammation levels for patients suffering from autoimmune and cancer diseases. ImproDdia’s technology department has made substantial discoveries enabling pharma companies a kickstart in their drug development processes as well as suggesting personalized treatment methods. Improdia’s Diagnostic Kit includes three easy-to-use, unique biomarkers with three distinct functions: the IMPC (for chronic inflammation), IMPI (for immunotherapy), and IMPD (for diabetes complications. IMPC evaluates the immune status and inflammatory pain levels of those with niche medical implications. It aids physicians in selecting the type and timing of specific treatments as well as monitoring the efficacy of such treatments. IMPI is a prognostic test for the efficiency of immunotherapy. It monitors the immune status of cancer patients before immunotherapy or chemotherapy. IMPD is a prognostic test for diabetes complications as it predicts the occurrence of these complications before they are medically obvious.

Improdia’s team consists of Miriam Lerner (Founder, Co-CEO, CTO), Gil Pogozelich (Chairman), Dr. Roy Eldor (Medical Director), Prof. Michal Baniyash (Inventor), and Prof. Ido Wolf (Member of the Scientific Advisory Board). The company has been based in Herzliya since 2012 and continues to aid doctors and patients in the diagnostic and management endeavours of those with chronic immune-mediated diseases.

Sight Diagnostics

Sight’s technology represents breakthrough innovations in diagnostic methodology. Their latest blood analyzer, Sight OLO, performs a Complete Blood Count, the most ordered blood test, in minutes. It’s compact and designed to be used in a variety of settings. OLO creates a digital version of a blood sample by capturing more than 1,000 highly detailed images from just two drops of blood obtained from a finger prick or venous sample. These images are then interpreted by proprietary and fully automated AI algorithms, and the results are available within minutes.

Sight OLO provides 5-part differential complete blood count (CBC) results with 19 parameters and sophisticated flagging capabilities, for on-site testing. It is the first CBC analyzer that is FDA 510(k) cleared for blood taken directly from either a finger prick or a venous sample. Sight OLO has been validated for use in patients 3 months and above, in a variety of CLIA-certified (Clinical Laboratory Improvement Amendments) moderately complex clinical settings such as hospitals, emergency departments, oncology clinics, pediatric practices, and urgent care locations. The sample preparation process can be completed in under one minute, with the full results ready in minutes on a touchscreen interface, printout, email, or via LIS (Latent Semantic Indexing)/middleware. Sight OLO comes factory calibrated for a quick setup with internal Failsafe systems and requires no maintenance. Its minimal training and step-by-step on-screen guidance are designed to be used by operators with any level of experience. OLO also has an Operator Management feature that allows for complete control over who can access the device, including traceability of operator activities.

Sight OLO was founded in 2011 by Yossi Pollack (CEO) and Daniel Levner (Chairman of the Scientific Advisory Board). The company is based in Tel Aviv, London, and Brooklyn with 300 employees. With investments from Koch Disruptive Technologies, OurCrowd, and Longliv, Sight Diagnostics has raised over $120 million to date. Sight has gained worldwide traction with partners eager to use and expand the company’s advanced technology. Among them are Boston Children’s Hospital, Oxford University Hospitals NHS Foundation Trust, and Nicklaus Children’s Hospital in Miami.

EFA

Handheld blood test diagnostic tools are not affordable for the average patient and consumer. Most of these tools require laboratory conditions and specific preparations which fail to account for real-time informed decisions an individual may have to make. Israeli startup EFA developed RevDx™, a revolutionary, European Commission-approved, mobile, and fully automated diagnostic system to be used for different care, including primary care physicians, home care, emergency care, and remote care. RevDx™ is easy-to-use; from a finger prick, you get results within minutes. The application provides a Complete Blood Count test, the most requested hematology test worldwide which provides indications for broad clinical conditions such as infections, disease, fever, immune system, and anemia.

Founded in 2016 by Yoel Ezra (CEO), an engineer and a physicist who served in a technological-operation unit in the IDF for over 23 years, EFA is acting to develop the RevDx solution as a platform that will enable the creation of more diagnostic applications over time. Among the company’s investors are Maccabi Healthcare Services, eHealth Ventures, Merchavia, and Medison. The company currently employs 12 people.

OrSense

Diverse clinical settings have not found easy nor accurate methods to measure blood parameters as current testing devices and tools are not appropriately equipped for such conditions. The key to medical testing is to establish a comfortable environment for any and all patients; with invasive monitoring, though, this element is rather ignored. Israeli startup OrSense works to transform patient health through non-invasive monitoring as they develop and commercialize innovative monitoring technologies focused primarily on donor and patient comfort. Using their revolutionary SpectOLight ™ Occlusion Spectroscopy Technology, OrSense has developed the NBM 200 Device that detects blood hemoglobin (Hb), oxygen saturation levels and pulse rate (PR) values. Patients place their fingers on a ring-sensor probe where the portable desktop attached to the monitor device calculates and displays the figured measurements. To make matters even easier and more efficient, OrSense has developed a software application attached to the device that allows for Tablet or Smartphone use.

Since 1996 OrSense has been working worldwide to overcome key obstacles that do not account for comfortable, accessible, and efficient blood parameter testing. For over 20 years, OrSense has made substantial adjustments toward non-invasive monitoring technologies: the intellectual property portfolio at OrSense consists of 51 granted patents and over 20 additional applications. So far, OrSense has raised over $44.4 million in seed and grant funding from Israel HealthCare Ventures, Star Ventures, Saints Capital, The Lewis Trust Group, and Shimon Eckhouse. Their team consists of Yoav Resiman (Founder and CEO), Aharon Weinstein (VP of Research). Asher Zysman (CFO), and Chip Neff (President). OrSense is located both in Tel Aviv, and Raleigh, North Carolina, USA.

PatenSee

Patients who suffer from renal failure are required to be connected to a hemodialysis machine for a few hours, 2-3 times a week, via a fistula on the patient’s arm. The fistula is the point of connection between the hemodialysis machine and the patient for the treatment. One of the most dreaded complications for hemodialysis patients is fistula loss due to stenosis (blood clogging of the fistula) resulting in an inability to perform routine dialysis – a major risk to patient life. PatenSee is a medical device company (currently in the clinical stage) that has developed a contactless, machine vision-based, surveillance system for the early detection of vascular stenosis and/or a clogged fistula. The technology is designed to provide a very simple way to improve the quality of patient care and to support the nursing staff in the hemodialysis center without adding any burden on the patient or the clinic. The system can also be adapted to home use adding a critical diagnostic feature to home dialysis.

PatenSee was founded in 2019 as a portfolio company of MEDX Xelerator, a MedTech incubator working under a license from the Israel Innovation Authority. Hagay Drori and Oz Seadia founded PatenSee based on an unmet need presented to the MEDX Xelerator by a major strategic player in the dialysis field. Dr. Gal Goshen, PatenSee’s CEO, led it from its early concept through its first-in-human 60-patient clinical study, conducted less than two years after the company’s founding. PatenSee is currently raising a Series A round and is preparing for a multi-center, international, clinical trial of its second-generation imaging system.

ILAN founder aims to create warm ties with Israel among the growing Spanish-speaking population.

The Israel Latin America Network (ILAN), established last year by Jewish Mexican-Syrian businessman and philanthropist Isaac Assa, is expanding to the United States, Costa Rica, Chile, Guatemala and other countries in Central America.

“Over the last year we directly developed unique connections between the State of Israel and Latin American countries,” said Assa on June 9 at ILAN’s first award ceremony, held in partnership with the Peres Center for Peace and Innovation in Tel Aviv-Jaffa.

“Through ILAN, we formed strategic alliances with a number of branches throughout America, which will strengthen the economic, diplomatic and social resilience of the countries,” Assa said.

“In a few years, the Spanish-speaking population in the United States will increase to 100 million people, and therefore strengthening these connections is a supreme goal in the interest of the states and the peoples. With the help of the Israeli brain, the innovation and the local courage, we will be able to make groundbreaking international achievements.”

ILAN presented Shimon Peres Lifetime Awards to internationally prominent Israelis who have promoted relations between Israel and Latin America in the areas of health, quality of environment, economy and technology.

Among the recipients were the Technion’s Prof. Shulamit Levenberg, who developed the technology behind Aleph Farms cultivated steak; Dr Amir Kereshonvich, chief of pediatric neurosurgery at Schneider Children’s Medical Center, who with his wife, Hila, set up a volunteer-led initiative to perform complicated brain surgeries on children from the developing world; Henrique Cymerman, an Israeli journalist of Portuguese-Sephardi descent who serves as the Middle East correspondent for a several media outlets and is president of the Chamber of Commerce between Israel-Jordan and the Persian Gulf States; Tato Bigio, founding partner and CEO of UBQ Materials, which converts household waste into recyclable raw materials; and Ella Castelenus, a new immigrant from Mexico who founded Hola – Land, a platform that connects Latin America and Israel, and a partner in Cantera Capital, a fund for enterprises in Israel and Mexico.

The Technion-Israel Institute of Technology and Rambam Health Care Campus together with philanthropists Andi and Larry Wolfe, announced the establishment of the Wolfe Center for Translational Medicine and Engineering

The Technion is one of the few academic institutions in the world in which the Faculty of Medicine operates alongside engineering and scientific faculties. The university conducts extensive teaching and research activities in the fields of medicine as well as biomedical engineering, computing, design, and architecture.

The Rambam Health Care Campus is heavily active in the research and innovation fields through its partnerships with its Division of Research, technology transfer company Rambam MedTech, and the MindUp incubator in cooperation with IBM, Medtronic, and Pitango VC.

The Wolfe Center will elevate the partnership between Rambam and the Technion and will serve as a platform for comprehensive clinical applied research to advance human health technologies that address unmet clinical needs. Interdisciplinary teams will collaborate to solve human health issues, translate research insights into innovative therapeutic tools, and train the next generation of doctors and engineers.  

The Center will be located within the Rambam campus inside the Helmsley Health Discovery Tower and serves as the first joint project of its kind between Rambam, academia, and the biomedical high-tech industry. The Tower will also host centers of excellence, clinical institutes, innovation centers, and several start-up companies, alongside an exhibition and visitor center.

“Research and innovation are critical components in the success of the healthcare system in the 21st century. The tremendous contribution of the Wolfe family will enable us to increase our capabilities. Research is now a necessity for keeping Israeli doctors relevant in a competitive and constantly evolving field. The new center will allow us to convince doctors who are engaged in the difficult, demanding clinical field to continue to work in a large medical center, by providing opportunities for advanced research,” said MikI Halberthal, professor and general director of Rambam Health Care Campus.

“Human health is one of the greatest challenges facing humanity in the 21st century and coping with this challenge requires a combination of capabilities from different worlds of content, from the patient’s bed and the doctors around it, to scientists and engineers from a variety of disciplines,” said Technion President Professor Uri Sivan. “Today, the Technion is creating a revolution aimed at connecting all those disciplines to deal with major challenges in human health, and the Wolfe Center will express the combination of the capabilities of one of Israel’s leading hospitals with a world-renowned scientific-technological university.”

The Israel Institute of Technology (TECHNION) has announced the establishment of the country’s first Artificial Intelligence (AI) research institute for medical technology solutions.

The Technion’s Zimin Institute for AI Solutions in Healthcare, which was jointly launched and operated with the Russian charity Zimin Foundation on Sunday, will focus on multidisciplinary research and technological development in human health and medicine using big data and computational learning, according to a statement from Technion.

Zimin Institute for AI Solutions intends to improve human healthcare on all levels, including hospitals, clinics, drug development, home therapy, and medical wearables. “This new centre is a crucial component of Technion President Uri Sivan’s goal of collaboration and connectivity between research, engineering, and medicine,” said Technion President Uri Sivan.

“It will support applied research that will speed the creation of new and important technologies with real-world applications,” he added.

The Israeli Institute of Technology continues to be at the forefront of groundbreaking solutions to help protect our planet.

This development coincides with Better Speech and Hearing Month

Israeli scientists at the Technion – Israel Institute of Science have engineered a working ear, alongside Sheba Medical Centre.

Led by Professor Shulamit Levenberg of the Faculty of Biomedical Engineering, the team combined techniques of organ printing, tissue engineering and the extraction of human cells to create a custom implant that can be used to replace ears that don’t develop properly in utero.

The scaffold, which allows for the formation of the new ear, is designed from a CT scan of the patient’s ear.

It is hoped the breakthrough will significantly help children with microtia – a condition in which the underdeveloped ear is small, malformed and sometimes unable to hear. 

Previously, it was treated using cartilage tissue from the ribs, which is both painful and comes with the risk of added complications. The new surgery can also be performed at the age of six instead of after 10, which may also help reduce the psychological effects for children who, up until now, have had to start school with a malformed ear.

It could also be tailored to “other applications, such as nasal reconstruction and fabrication of various orthopedic implants”, Professor Levenberg hopes.

Microtia affects 0.1% to 0.3% of births.

Each May, Better Hearing and Speech Month helps raise awareness about communication disorders and hearing health.

The Israeli Institute of Technology continues to be at the forefront of groundbreaking solutions to help protect our planet