Technion Is Europe’s top university in the field of artificial at intelligence for the second year in a row calling to an international ranking of computer science institutions globally

The university also placed 16th in the world in the field of AI and 10th in the world in the subfield of learning systems.

The Technion continues to establish its position as the leading research institution in Israel and Europe in the core areas of artificial intelligence, thanks to the unique work environment that exists in this field at the Technion,” said Shie Mannor, a co-director of Tech.AI − Technion Artificial Intelligence Hub.

Around 150 Technion researchers are involved in Tech.AI, applying advanced AI practices to a variety of fields including data science, medical research, mechanical engineering, civil engineering, architecture and biology  

Solidifying the Technion‘s position as a pioneer and world leader in the field of AI and spreading the knowledge acquired in this process to the commercial world in all its aspects are very important national tasks,” said fellow Tech.Al Co-Director Assaf Schuster.

According to Shai Shen-Orr, who leads the biomed activity and AI solutions for the health sector within Tech.AI, the centre has used its advancements in the field of AI to create partnerships with companies such as Pfizer and IBM and leading medical institutions including the Rambam Health Care Campus in Israel and the Cincinnati Children’s Hospital Medical Centre.

The Technion recently announced that it has established a new institute that will focus on applying AI research to create solutions in the field of human health and medicine.

Kidney failure, Multiple Sclerosis and stroke are all being targeted

Two Technion master’s degree students have created a way to accurately predict whether a person is likely to have a stroke.

Working under the supervision of the head of the Artificial Intelligence Laboratory in Medicine, Shany Biton and Sheina Gendelman worked with more than one million ECG recordings from more than 400,000 patients to create a machine-learning algorithm to assess the likelihood of developing an irregular heart rhythm atrial fibrillation (AFib), which causes one in seven strokes.

Only 5% of the 60% predicted to develop AFib did not go on to develop the condition.

It means countless lives could be saved as those at risk are notified in advance, enabling them to make necessary lifestyle changes to either prevent or delay the condition. 

Professor Behar, who led the study, said: “We do not seek to replace the human doctor. We don’t think that would be desirable. But we wish to put better decision support tools into the doctors’ hands.”

Meanwhile, two Technion-led startups are changing the way we treat some of the most common health conditions.

CollPlant Biotechnologies – led by alum Yechiel Tal – is working with United Therapeutics Corporation to manufacture artificial kidneys using a former tobacco plant. The process includes growing small plantlets from the seeds of engineered tobacco plants to create the collagen required for the 3D printing of human organs.

“Organ shortages are an unmet global health need, [and] by partnering with United Therapeutics, we have made significant progress with this pivotal organ manufacturing initiative,” Tal said. “We remain committed to exploring new innovative applications in the fields of medical aesthetics and 3D bioprinting of tissues and organs.”

NeuroGenesis – whose COO is a Technion alum – is another Israeli company making giant strides in healthcare thanks to its stem cell therapy which hopes to regenerate the brain of MS sufferers. 

Of 15 patients who received spinal injections from their own bone marrow, nine experienced a drop in levels of neurofilament light chain – a protein heightened as the disability progresses – and eight went on to have improved disability scores, even after a year.

The peer-reviewed study has been published in the journal Stem Cells Translational Medicine.

The increased demand for sustainable energy sources prompted research groups to focus on battery research in order to store large-scale grid energy in a manageable and reliable manner. In addition, the rising demand of the electric vehicle industry, which mainly relies on current Li-ion battery technology, is expected to strain the current lithium production and divert it from more widespread use as portable consumer electronics. Currently, no technology has proven to be competitive enough to displace Li-ion Batteries.

Now, a team of researchers from the Technion – Israel Institute of Technology has developed a proof-of-concept for a novel rechargeable silicon (Si) battery, as well as its design and architecture that enables Si to be reversibly discharged and charged.

The research was led by Professor Yair Ein-Eli of the Faculty of Materials Science and Engineering. The team proved via systematic experimental works of the graduate student Alon Epstein and theoretical studies of Dr. Igor Baskin that silicon is dissolved during the battery discharge process, and elemental silicon is deposited upon charging. Several discharge-charge cycles were achieved, utilizing heavy doped n-type Si wafer anodes and specially designed hybrid-based ionic liquid electrolytes, tailored with halides (Bromine and Iodine), functioning as conversion cathodes.

This breakthrough could pave the way towards the enrichment of the battery technologies available in the energy storage market, with the technology potentially easing stress on the ever-growing market and serving the increasing demand for rechargeable batteries.

Silicon, as the second most abundant element on earth’s crust, was left relatively unexplored despite a high energy density of 8.4 kWh kg-1 on par with metallic Li 11.2 kWh kg-1. Silicon possesses stable surface passivation and low conductivity (dependent on the doping levels). Until now, no established rechargeable cell chemistry comprising elemental Si as an active anode has been reported outside LIB alloying anode.

In the past decade, several publications reported the incorporation of active silicon anodes in primary, non-rechargeable air-battery designs. Thus despite its high abundance and ease of production, the possibility of using Si as an active multivalent rechargeable anode was never explored until the team’s recent breakthrough.

A team of researchers from the Technion–Israel Institute of Technology has developed a proof-of-concept for a novel rechargeable silicon (Si) battery, as well as its design and architecture that enables Si to be reversibly discharged and charged.

Led by Professor Yair Ein-Eli of the Faculty of Materials Science and Engineering, the team proved via systematic experimental works of the graduate student, Alon Epstein and theoretical studies of Dr. Igor Baskin, that Si is dissolved during the battery discharge process, and upon charging, elemental Si is deposited. Several discharge-charge cycles were achieved, utilizing heavy doped n-type Si wafer anodes and specially designed hybrid based ionic liquid electrolytes, tailored with halides (Bromine and Iodine), functioning as conversion cathodes.

This breakthrough could pave the way towards an enrichment of the battery technologies available on the energy storage “super-market” technology, providing an ease on the ever-growing market and demand for rechargeable batteries.

Developments leading to this breakthrough

The increased demand for sustainable energy sources prompted the scientific community to focus on battery research capable of storing large scale grid energy in a manageable and reliable manner. Moreover, the rising demand of the EV industry, which mainly relies on current Li-ion batteries (LIBs) technology is expected to strain current Li production and divert it from more widespread use as portable consumer electronics. Currently, no technology has proven to be competitive enough to displace LIBs. Metals and elements capable of delivering multi-electrons during their oxidation process have been the focus of the research community for a long time due to their associated high specific energy densities.

Magnesium, calcium, aluminum and zinc received much attention as potential anode materials with varied levels of progress; yet none has managed to revolutionize the energy storage industry beyond LIBs, as all of these systems suffer from poor kinetic performance to lack of cell stability, and therefore, much is left to be explored. Silicon (Si), as the second most abundant element on earth’s crust (after oxygen) was left relatively unexplored despite a high energy density of 8.4 kWh kg-1 on par with metallic Li 11.2 kWh kg-1; Si possesses a stable surface passivation, low conductivity (dependent on the doping levels) and until now no established rechargeable cell chemistry comprising elemental Si as an active anode has been reported, outside LIB alloying anode.

In the past decade several publications (initiated originally in 2009 by Prof. Ein-Eli) reported the incorporation of active Si anodes in primary, non-rechargeable air-battery designs. Thus, despite its high abundance and ease of production, the possibility of using Si as an active multivalent rechargeable anode was never explored, until the team’s recent breakthrough.

The Formula Student competition in Europe this summer is a platform for new technological developments.  

The Technion-Israel Institute of Technology Formula racecar team unveiled the first-ever autonomous electric vehicle in the team’s history since 2012.

They designed and built it for the Formula Student International Design Competition in Europe next month.

The Technion team placed first at the Formula Student competition in the Czech Republic in 2019, and first place in the first Formula Student Race held in Israel last year. This team also holds the title for the lightest car in the history of the European competition (132 kg).

Team leader Muans Omari, a master’s student in the Faculty of Mechanical Engineering, explained that the car world is shifting to electric and autonomous vehicles, and the Formula Student competitions have embraced this trend.

Nevertheless, the transition from an internal combustion engine to an electric propulsion system “took a lot of work and learning,” Omari added.

The Formula Technion team’s autonomous electric vehicle (A-EV) is no longer red and black as in past years, but blue, white and gray to symbolize electric propulsion.

The Formula Student competition is a platform for new technological developments. Each team’s performance is rated on a combination of engineering challenges plus driving skills demonstrated on the track.

The goal of the project is to enable students to acquire practical knowledge in planning as well as manufacturing vehicles.

“We are considered a good team,” Omari said. “We’re not as good as the German teams that are being supported by the largest car manufacturers and their engineers, but we already proved ourselves.”

Technion, Israel’s Institute of Technology is the oldest university in the country and one of the leading universities in the world.  

Its Faculty of Biotechnology and Food Engineering is a unique department where expertise from many disciplines comes together.

Israel is a global centre of food and agri-tech, producing remarkable innovations, and attracting astonishing levels of investment.

But, like anywhere else in the world, there are problems; food waste, overfishing, unsustainable practices, feeding a growing population. Israel is facing all of the above and the issues are taxing its brightest minds.

The Food Matters Live Podcast has looked at innovation in Israel before, but in this episode we are going to get a unique insight into one of the world’s leading research centres.

The Faculty of Biotechnology and Food Engineering is led by Professor Marcelle Machluf, a remarkable woman who was named Lady Globe Magazine’s ‘Woman of the Year’ in 2018.

Her work has been included in the Israel Ministry of Science and Technology’s list of ‘Israel’s 60 Most Impactful Developments’.

During this episode of the Food Matters Live Podcast, we learn about the new Carasso FoodTech Innovation Center being built at Technion.

It has an R&D centre, packaging laboratory, kitchens, tasting, and evaluation units.

Professor Machluf says: “It’s not enough to just sit in the classroom. Our students need the right equipment to develop their ideas and they need to be prepared for whatever the future holds.”

Listen to the full episode to hear her views on the importance of building relationships to drive innovation, learn more about the work being done at Technion, and how the institute is going about developing a centre for ideas that haven’t yet been born.

Professor Marcelle Machluf, Dean of the Faculty of Biotechnology and Food Engineering, Technion

Professor Marcelle Machluf is renowned for her cutting-edge cancer and drug delivery research, and her work in tissue regeneration.

She is head of the Technion’s graduate Interdisciplinary Program in Biotechnology, a member of the Affiliate Engineering Faculty of the Technion Integrated Cancer Center, and former deputy executive vice president for research for the Technion’s Pre-Clinical Research Authority. She also works closely with the Russell Berrie Nanotechnology Institute.

Professor Machluf is developing a targeted drug delivery system using modified stem cells called Nano-Ghosts to home in on tumours, unleashing its therapeutic load at the cancer site.

She is also developing scaffolding for tissue engineering of the pancreas, heart, and blood vessels, and developing carriers for cell delivery with applications for treating diabetes and more.

She has a laboratory at Nanyang Technological University of Singapore, where she is working on a leading tissue regenerative project.

Professor Machluf has authored book chapters and more than 80 peer-reviewed journal papers in leading journals. Her work has been cited more than 2,800 times. She has six national patents and two approved international patents in the fields of drug delivery and tissue engineering.

She is the recipient of many honours including the Alon Award for excellence in science, the Gutwirth Award for achievements in gene therapy, the Hershel Rich Technion Innovation Award, and the Juludan Research Prize for outstanding research.

This week, we continue our series on selected topics regarding cancer in Israel. In recent years, Israel has become a major leader in the technology and startup arena in health products. A leading example of the success in this arena has been the work of Gavriel Iddan.

One of the great technological advances that has made major contributions to medicine is fiber optic technology. The ability to transmit light along thin, flexible fibers and cables has had many applications in industry and elsewhere, especially telecommunications. One of the key individuals responsible for its development was awarded the Nobel Prize in Physics in 2009.

Fiber optics had its main applications in medicine in the creation of various flexible scopes. These have become a mainstay of otolaryngology, as well as pulmonary medicine with bronchoscopy, and the use of arthroscopy for inspection of joints by orthopedists. But perhaps the best known use of endoscopy has been in the alimentary tract. Esophagogastroduodenoscopy (EGD) is a commonly used tool for diagnostic evaluation of the upper GI tract (esophagus, stomach, duodenum) while colonoscopy is widely used for screening and diagnosis of the lower GI tract.

Between the 1.2 meters of the upper gastrointestinal tract and the 1.8 meters of the large intestine, however, is a large organ, the small bowel or small intestine, comprising an additional 6 meters, which is mostly inaccessible to either of these instruments. In truth, it was previously difficult to undertake diagnostic studies of conditions which involved the small intestine—tumors of one type or another, Crohn’s disease, celiac disease, etc.

Gavriel Iddan, born in Haifa in 1941, was an electro-optical engineer (whatever that is) and a graduate of the Technion in Haifa. He worked for the Rafael Armament Development Authority in Israel, working on guided missile technology, part of the research and development branch of the Israeli Ministry of Defense. In 1981, he was on a sabbatical leave in Boston and living next door to an Israeli gastroenterologist, Eitan Scappa. Iddan was working at Elscint, a company specializing in medical imaging. His neighbor, Dr. Scappa, developed some type of stomach ailment and Iddan became aware that there was no technology available for investigating his neighbor’s small bowel. This began his 20-year quest to solve the problem.

Iddan realized that the solution to the problem could lie with small charged coupled device imaging chips which had just been developed. (I have no clue what they are.)

By 1998, he had developed a prototype for an ingestible wireless capsule that contained a battery-powered camera and transmitter. This device would traverse the entire gastrointestinal tract and transmit images of the small bowel to a receiver held on the patient’s abdomen. Ultimately the device, capsule endoscopy, was created under the aegis of a new biotechnology company, Given Imaging, with a patent in 1999. The first patient underwent examination with this device in Dr. Scappa’s office in Ramat Hasharon near Tel Aviv. In this first trial, the capsule became stuck in the duodenum (the first part of the small intestine) and had to be pushed along by an endoscope.

In its current usage, it takes about an hour for the capsule endoscope to pass through the stomach. To get through the small intestine can take approximately another six hours. Passage through the large bowel is variable and can take hours or days. When the procedure is done, the recorder and patches are returned to the physician. The capsule itself is disposable and can be flushed down the toilet.

The procedure costs between $1,000 and $2,000. Once in about 1,000 procedures the capsule gets stuck and has to be retrieved in some fashion.

Given Imaging is headquartered in Yokneam, which seems to be the Israeli equivalent of Silicon Valley. It is a poster child for Israel’s hugely successful technology industries, with 140 scientists and technicians per 10,000 employees versus 85 in the U.S.

At this time, efforts are ongoing to expand the use of capsule endoscopy to investigate the large intestine and stomach. The same technology and video camera can be utilized to image those organs. In particular, it could hypothetically substitute for colonoscopy for those unwilling or unable to undergo that procedure. At this time, over 2 million capsule endoscopies are performed annually worldwide. One limitation is that additional procedures are limited, such as biopsies, but research groups are currently working to expand the ability of the capsule to be able to perform such procedures as well.

The pharmaceutical industry is considered one of the important sectors growth investors should focus on because of continuous research and development of new medicines, as well as commercialisation.

The development of new vaccines and medications for COVID-19 attracted a lot of investor attention in 2020, which caused biotech stock prices to skyrocket. This trend continued until 2021, resulting in rising biotech stock prices. However, the boom gave way to a biotech bear market in late 2021. This year, the broad market has performed poorly, but biotech shares have performed even worse, underperforming the broader markets.

Investors have become less interested in risky companies in the biotech sector because of high inflation and expectations for higher interest rates. The SPDR S&P Biotech ETF (XBI), an equal-weighted index of biotech stocks, has fallen 40% since January 1, 2021, and is down 23% so far this year. On the other hand, the S&P 500 is down 13.4% YTD. However, since mid-June, biotech stocks have begun a fast-paced recovery.

While current macro trends may hurt biotech stocks in the short term, innovative technology that is well managed has the potential to do very well in the long run. Covid emphasized this extensively, which has heightened market interest in coronavirus treatment and vaccine options. Given how oversold biotech stocks have become, many of these stocks are now appearing to be bargains.

Most biotech firms research and develop multiple drugs concurrently, providing these companies with multiple revenue streams and safe investment opportunities for investors. The current challenges seen by the biotech sector could create a fantastic buying opportunity for investors looking for a stock with the potential for significant long-term growth.

Given all of the above, here are 4 promising biotech companies to consider.

Intellia Therapeutics Inc (NTLA)

Intellia Therapeutics, founded in 2014, is a leading genome editing company that develops curative gene-editing treatments. The company’s programs include the treatment of transthyretin amyloidosis, hereditary angioedema, and acute myeloid leukemia; and proprietary programs focused on developing engineered cell therapies to treat various oncological and autoimmune disorders. Intellia also has licensing and collaboration agreements with various research institutes.

The company continues to make excellent progress with its clinical trials and is expected to present early-stage interim data from a couple of trials and make a major regulatory filing by the end of 2023. In recent financial results, Intellia reported positive progress in both the cardiomyopathy and polyneuropathy arms of the landmark Phase 1 study of NTLA-2001. The stock is down 45% YTD presenting a good time to add this stock to a growth investor’s portfolio as the positive events expected in the coming quarters might drive its stock higher in the coming months.

BioMarin Pharmaceutical Inc (BMRN)

BioMarin Pharmaceutical, Inc., founded in 1997, is a biotechnology company that engages in the development and commercialization of therapies for people with serious and life-threatening rare diseases and medical conditions. Its commercial products include Vimizim, Naglazyme, Kuvan, Palynziq, Brineura, Voxzogo, and Aldurazyme. The company’s pipeline includes Valoctocogene Roxaparvovec (Roctavian) which is in Phase III clinical trial for the treatment of Hemophilia A; BMN 307, an AAV5 mediated gene therapy which is in Phase 1/2 clinical trial; and BMN 255 which is in Phase 1/2 clinical tria for treating primary hyperoxaluria.

The company recently announced its Q2 earnings which surpassed analyst estimates. BioMarin reported $533.8 million in sales, up 6% Y/Y. Further, Voxzogo for achondroplasia (dwarfism) reported sales of $34.4 million. An estimated 446 children were being treated with commercial Voxzogo globally, compared to 284 children in Q1 FY22.

The stock is up 4% YTD and is expected to perform well in the long-term with the company’s commercial sales for Voxzogo in Japan and Australia expected to begin in Q3. BioMarin also expects that Roctavian will be approved in Europe in Q3, with FDA resubmission planned for September.

NurExone Biologic Ltd. (NRX.V)

NurExone is working on a treatment for traumatic central nervous system damage based on groundbreaking biological extracellular vesicles (E.V.) technology. This startup is developing ExoTherapies, in which exosomes are loaded with healing molecules, and an easy-to-administer delivery system to change the way traumatic spinal cord injury (SCI) is treated around the world. According to the World Health Organization, the estimated global SCI incidence is 40 to 80 new cases per million population per year.

NurExone’s first ExoTherapy, ExoPTEN, has shown very promising results for spinal cord injuries during animal studies. It promoted exon-growth functional recovery, or nerve regeneration. This suggests that NurExone’s groundbreaking and proprietary exosome-based therapy has the potential to provide a much-needed, functional-recovery providing treatment for SCI.

The company holds a worldwide exclusive license agreement with the Technion, Israel Institute of Technology in Haifa, for the development of technology, clinical trials, and commercialization. Nurexone (NRX.V) is now listed on the TSX Venture Exchange, following the completion of a Reverse Takeover Transaction.

Israel is home to more than 400 active biotech startups that have shown remarkable growth by leveraging advanced technologies. The country is known for investing the highest percentage of its GDP in R&D encouraging academic centers and research groups to develop breakthrough treatments. Given the availability of resources and support, alongside the fast-growing industry NurExone is pursing, the company is primed to experience significant growth in the coming years.

Vertex Pharmaceuticals Incorporated (VRTX)

Vertex, founded in 1989, focuses on the discovery, development manufacturing, and commercializing of breakthrough small molecule drugs for serious diseases including cystic fibrosis, infectious diseases, autoimmune diseases, and neurological disorders. The company reported strong second-quarter results with product revenues up 22% Y/Y to $2.20 billion.

The stock is up 24% YTD. Given the company’s recent pipeline development, the stock has more upside potential. Vertex’s CF (cystic fibrosis) drug TRIKAFTA recorded strong performance in the United States. As a result, the company expects the demand for CF drugs to remain high additionally driven by the launch of KAFTRIO outside the United States. Vertex has completed the Phase 3 study of TRIKAFTA/KAFTRIO in children 2 to 5 years old and expects to submit global regulatory filings for TRIKAFTA/KAFTRIO in children 2 to 5 years old this year.

Vertex has also filed a Supplemental New Drug Application (sNDA) with the U.S. Food and Drug Administration (FDA) and a Marketing Authorization Application (MAA) with the European Medicines Agency (EMA) for the use of ORKAMBI in children 12 months to less than 24 months old.

Conclusion

Biotech stocks have started to recover with some big players reporting positive growth in the recent quarter. Investors who add the right biotech companies to their portfolio now will be able to reap lucrative rewards in the long run when the bear market eventually subsides.

Researchers at the Israel Institute of Science and Technology are making great strides in how the disease is both detected and treated

Technion professors and graduates are continuing to make significant contributions in the field of cancer research. 

Professor Yuval Shaked, along with startup, OncoHost, has created a blood test that will allow doctors to provide personalised treatment plans to cancer patients, Ibex Medical Analytics, headed up by Dr Daphna Laifenfeld (who researched it during her time at the university), has created an Artificial Intelligence-based cancer diagnostic software, while NanoGhost, co-founded by Professor Marcelle Machluf, is another technology “that targets cancer cells with modified adult stem cells loaded with medicine.”

Having already raised $5 million, NanoGhost – which innovatively delivers cancer medicine directly to tumour cells, allowing the potency to be reduced by a factor of a million – has been treating pancreatic, lung, breast, prostate and brain cancer successfully in mice.

Professor Machluf says: “This integration turns the NanoGhost platform from a ‘taxi’ that delivers the drug to the target into a ‘tank’ that participates in the war. 

“The integrated platform delivers the drug to the tumour and enables a significant reduction in drug dosage yet still does the job. We also showed that our method does not harm healthy cells.”

NanoGhost is on track to begin clinical trials in 2023.

The university team has tested its research on mice in a novel trial

A team of scientists from Technion – Israel Institute of Technology has used genetically engineered muscle tissue to cure mice of type 2 diabetes.

Muscle cells are among the main targets of insulin, which is supposed to absorb sugar from the blood. However, in type 2 diabetics, this ability is reduced.

Up until now, restoring the metabolic activity of muscles has just been an unexplored idea. Now, however, the theory has been proven – thanks to Professor Shulamit Levenberg, Dean of the Faculty of Biomedical Engineering at the Technion and doctoral student Rita Beckerman.

Isolating the muscle cells and engineering them to be metabolically functional before transporting them back into the abdomen of the diabetic mice led to the now-healthy cells absorbing sugar correctly and improved blood sugar levels – both in the abdominal muscles and elsewhere in the body.

The mice remained cured of diabetes for the entire four-month period which they were observed.

Professor Levenberg said: “These cells worked hard and absorbed glucose, and also secreted factors that systematically affected the metabolism of the mice.

“The approach can be used to rescue mice from their diabetic situation, and now we hope to be able to use it in the future as a treatment for humans.”

“It’s such a novel approach that we really didn’t know what to expect, but we were extremely happy with the result”, Beckerman added.

“This could potentially, in the future, give human patients with Type 2 diabetes the possibility of having an implant and then going for a few months without taking any medications.”

The research is published in the peer-reviewed Science Advances journal. 

Diabetes currently affects 4.7 million people in the UK, according to Diabetes UK – 90% of which will have type 2. Type 2 diabetes can lead to long-term complications such as heart disease, stroke, kidney failure and blindness.