The pharmaceutical industry is considered one of the important sectors growth investors should focus on because of continuous research and development of new medicines, as well as commercialisation.

The development of new vaccines and medications for COVID-19 attracted a lot of investor attention in 2020, which caused biotech stock prices to skyrocket. This trend continued until 2021, resulting in rising biotech stock prices. However, the boom gave way to a biotech bear market in late 2021. This year, the broad market has performed poorly, but biotech shares have performed even worse, underperforming the broader markets.

Investors have become less interested in risky companies in the biotech sector because of high inflation and expectations for higher interest rates. The SPDR S&P Biotech ETF (XBI), an equal-weighted index of biotech stocks, has fallen 40% since January 1, 2021, and is down 23% so far this year. On the other hand, the S&P 500 is down 13.4% YTD. However, since mid-June, biotech stocks have begun a fast-paced recovery.

While current macro trends may hurt biotech stocks in the short term, innovative technology that is well managed has the potential to do very well in the long run. Covid emphasized this extensively, which has heightened market interest in coronavirus treatment and vaccine options. Given how oversold biotech stocks have become, many of these stocks are now appearing to be bargains.

Most biotech firms research and develop multiple drugs concurrently, providing these companies with multiple revenue streams and safe investment opportunities for investors. The current challenges seen by the biotech sector could create a fantastic buying opportunity for investors looking for a stock with the potential for significant long-term growth.

Given all of the above, here are 4 promising biotech companies to consider.

Intellia Therapeutics Inc (NTLA)

Intellia Therapeutics, founded in 2014, is a leading genome editing company that develops curative gene-editing treatments. The company’s programs include the treatment of transthyretin amyloidosis, hereditary angioedema, and acute myeloid leukemia; and proprietary programs focused on developing engineered cell therapies to treat various oncological and autoimmune disorders. Intellia also has licensing and collaboration agreements with various research institutes.

The company continues to make excellent progress with its clinical trials and is expected to present early-stage interim data from a couple of trials and make a major regulatory filing by the end of 2023. In recent financial results, Intellia reported positive progress in both the cardiomyopathy and polyneuropathy arms of the landmark Phase 1 study of NTLA-2001. The stock is down 45% YTD presenting a good time to add this stock to a growth investor’s portfolio as the positive events expected in the coming quarters might drive its stock higher in the coming months.

BioMarin Pharmaceutical Inc (BMRN)

BioMarin Pharmaceutical, Inc., founded in 1997, is a biotechnology company that engages in the development and commercialization of therapies for people with serious and life-threatening rare diseases and medical conditions. Its commercial products include Vimizim, Naglazyme, Kuvan, Palynziq, Brineura, Voxzogo, and Aldurazyme. The company’s pipeline includes Valoctocogene Roxaparvovec (Roctavian) which is in Phase III clinical trial for the treatment of Hemophilia A; BMN 307, an AAV5 mediated gene therapy which is in Phase 1/2 clinical trial; and BMN 255 which is in Phase 1/2 clinical tria for treating primary hyperoxaluria.

The company recently announced its Q2 earnings which surpassed analyst estimates. BioMarin reported $533.8 million in sales, up 6% Y/Y. Further, Voxzogo for achondroplasia (dwarfism) reported sales of $34.4 million. An estimated 446 children were being treated with commercial Voxzogo globally, compared to 284 children in Q1 FY22.

The stock is up 4% YTD and is expected to perform well in the long-term with the company’s commercial sales for Voxzogo in Japan and Australia expected to begin in Q3. BioMarin also expects that Roctavian will be approved in Europe in Q3, with FDA resubmission planned for September.

NurExone Biologic Ltd. (NRX.V)

NurExone is working on a treatment for traumatic central nervous system damage based on groundbreaking biological extracellular vesicles (E.V.) technology. This startup is developing ExoTherapies, in which exosomes are loaded with healing molecules, and an easy-to-administer delivery system to change the way traumatic spinal cord injury (SCI) is treated around the world. According to the World Health Organization, the estimated global SCI incidence is 40 to 80 new cases per million population per year.

NurExone’s first ExoTherapy, ExoPTEN, has shown very promising results for spinal cord injuries during animal studies. It promoted exon-growth functional recovery, or nerve regeneration. This suggests that NurExone’s groundbreaking and proprietary exosome-based therapy has the potential to provide a much-needed, functional-recovery providing treatment for SCI.

The company holds a worldwide exclusive license agreement with the Technion, Israel Institute of Technology in Haifa, for the development of technology, clinical trials, and commercialization. Nurexone (NRX.V) is now listed on the TSX Venture Exchange, following the completion of a Reverse Takeover Transaction.

Israel is home to more than 400 active biotech startups that have shown remarkable growth by leveraging advanced technologies. The country is known for investing the highest percentage of its GDP in R&D encouraging academic centers and research groups to develop breakthrough treatments. Given the availability of resources and support, alongside the fast-growing industry NurExone is pursing, the company is primed to experience significant growth in the coming years.

Vertex Pharmaceuticals Incorporated (VRTX)

Vertex, founded in 1989, focuses on the discovery, development manufacturing, and commercializing of breakthrough small molecule drugs for serious diseases including cystic fibrosis, infectious diseases, autoimmune diseases, and neurological disorders. The company reported strong second-quarter results with product revenues up 22% Y/Y to $2.20 billion.

The stock is up 24% YTD. Given the company’s recent pipeline development, the stock has more upside potential. Vertex’s CF (cystic fibrosis) drug TRIKAFTA recorded strong performance in the United States. As a result, the company expects the demand for CF drugs to remain high additionally driven by the launch of KAFTRIO outside the United States. Vertex has completed the Phase 3 study of TRIKAFTA/KAFTRIO in children 2 to 5 years old and expects to submit global regulatory filings for TRIKAFTA/KAFTRIO in children 2 to 5 years old this year.

Vertex has also filed a Supplemental New Drug Application (sNDA) with the U.S. Food and Drug Administration (FDA) and a Marketing Authorization Application (MAA) with the European Medicines Agency (EMA) for the use of ORKAMBI in children 12 months to less than 24 months old.


Biotech stocks have started to recover with some big players reporting positive growth in the recent quarter. Investors who add the right biotech companies to their portfolio now will be able to reap lucrative rewards in the long run when the bear market eventually subsides.

Researchers at the Israel Institute of Science and Technology are making great strides in how the disease is both detected and treated

Technion professors and graduates are continuing to make significant contributions in the field of cancer research. 

Professor Yuval Shaked, along with startup, OncoHost, has created a blood test that will allow doctors to provide personalised treatment plans to cancer patients, Ibex Medical Analytics, headed up by Dr Daphna Laifenfeld (who researched it during her time at the university), has created an Artificial Intelligence-based cancer diagnostic software, while NanoGhost, co-founded by Professor Marcelle Machluf, is another technology “that targets cancer cells with modified adult stem cells loaded with medicine.”

Having already raised $5 million, NanoGhost – which innovatively delivers cancer medicine directly to tumour cells, allowing the potency to be reduced by a factor of a million – has been treating pancreatic, lung, breast, prostate and brain cancer successfully in mice.

Professor Machluf says: “This integration turns the NanoGhost platform from a ‘taxi’ that delivers the drug to the target into a ‘tank’ that participates in the war. 

“The integrated platform delivers the drug to the tumour and enables a significant reduction in drug dosage yet still does the job. We also showed that our method does not harm healthy cells.”

NanoGhost is on track to begin clinical trials in 2023.

The university team has tested its research on mice in a novel trial

A team of scientists from Technion – Israel Institute of Technology has used genetically engineered muscle tissue to cure mice of type 2 diabetes.

Muscle cells are among the main targets of insulin, which is supposed to absorb sugar from the blood. However, in type 2 diabetics, this ability is reduced.

Up until now, restoring the metabolic activity of muscles has just been an unexplored idea. Now, however, the theory has been proven – thanks to Professor Shulamit Levenberg, Dean of the Faculty of Biomedical Engineering at the Technion and doctoral student Rita Beckerman.

Isolating the muscle cells and engineering them to be metabolically functional before transporting them back into the abdomen of the diabetic mice led to the now-healthy cells absorbing sugar correctly and improved blood sugar levels – both in the abdominal muscles and elsewhere in the body.

The mice remained cured of diabetes for the entire four-month period which they were observed.

Professor Levenberg said: “These cells worked hard and absorbed glucose, and also secreted factors that systematically affected the metabolism of the mice.

“The approach can be used to rescue mice from their diabetic situation, and now we hope to be able to use it in the future as a treatment for humans.”

“It’s such a novel approach that we really didn’t know what to expect, but we were extremely happy with the result”, Beckerman added.

“This could potentially, in the future, give human patients with Type 2 diabetes the possibility of having an implant and then going for a few months without taking any medications.”

The research is published in the peer-reviewed Science Advances journal. 

Diabetes currently affects 4.7 million people in the UK, according to Diabetes UK – 90% of which will have type 2. Type 2 diabetes can lead to long-term complications such as heart disease, stroke, kidney failure and blindness.

This Israeli startup finds key ingredients in nature that are also found in breast milk

The ingredients that make mother’s milk the best possible thing for a baby will now be available for grownups.

Israeli food tech startup Maolac uses an algorithm that matches the key proteins in breast milk with alternative sources found in mushrooms, algae, and plants.

Everything that baby benefits from — protection against illness, anti-inflammatory qualities, and nutrition — will be utilized in a superfood for adults, Maya Ashkenazi Otmazgin, and biomedical engineer and the CEO for Maolac, tells NoCamels.

“We created an algorithm that can actually look at all the proteins inside breast milk and mix and match the key proteins responsible for different functionalities and then find them in alternative sources in nature, like mushrooms, algae, and plants,” she says.

Maolac is also said to be the first company in the world to identify and extract functional proteins from bovine colostrum, a nutrient-rich milky fluid that comes from the udder of cows in the first four to five days after giving birth, which is 95 percent equivalent to those found in breast milk, according to the firm.

Bovine colostrum produced by baby calves should not go to waste. Image by Erdenebayar Bayansan from Pixabay

Extra milk from calves– as much as 20 liters per cow — is thrown away after getting a certain amount from each one. “If we look for it, we will see 5 billion liters of bovine colostrum that the dairy industry does not use,” Ashkenazi Otmazgin says.

“The idea of transforming the first, nutrient-rich milk of cows that have just given birth into a source for human protein is a stroke of pure genius. Billions of liters of bovine colostrum are discarded each year. Maolac takes this waste and creates a product of huge potential benefit to millions at a time when the world is desperately searching for new sustainable sources of protein. The company is a perfect example of the circular economy in action,” said Jon Medved, CEO of OurCrowd, which has invested in the company.

Nursing vision 

Otmagazin had the idea to create a superfood using nutritional ingredients found in breast milk while experiencing “the magic” of nursing her first child. She realized she wanted to harness the benefits of that breast milk for adults.

“I told myself – this is the ultimate superfood for mammals,” she says in a conversation with NoCamels during a short break between a hectic day of meetings. “There are different functionalities that breast milk can provide for a small human being and I realized we could leverage all the goodness to create something new inspired by a formulation that created the human species and actually brought us to where we are,” she says.

In 2018, Ashkenazi Otmazgin joined forces with Eli Lerner and immunity expert Dr. Ariel Orbach to form a food tech startup. The company just raised a $3.2 million seed funding round led by active crowdfunding platform OurCrowd with participation from The Kitchen FoodTech Hub founded by the Strauss Group, The Food Tech Lab, VentureIsrael, NEOME, and Mediterranean Towers Ventures.

Studies have shown that there are numerous benefits to breastfeeding a baby that both protect against illness and positively impact health and child development. According to the Cleveland Clinic in Cleveland, Ohio, USA, breast milk provides abundant and easily absorbed nutritional components, antioxidants, enzymes, immune properties, and live antibodies from the mother that attack germs and protect the baby from illness.

Maolac superfood products. Courtesy.

Maolac’s technology relies on a bio-convergence platform for the discovery of proteins based on machine learning and natural language processing search algorithms. The company identified more than 1,5000 known bio-active proteins in human breast milk and over 400 homolog proteins in bovine colostrum, and have since created thousands of human functional milk protein mixtures using similar ingredients found in plants and mushrooms, and other sources found in nature.

Ashkenazi Otmazgin stresses that the alternative sources must come from nature. “We don’t make them in a lab or genetically modify our mixtures.”

Maolac’s active ingredients work like breast milk to directly target specific body function, traveling through the bloodstream or gut to produce higher overall efficacy at lower dosages, a statement from Maolac said.

One of the ingredients has anti-inflammatory properties and is part of the first Maolac product line for humans. It will target athletes to reduce muscle strain and improve recovery time. The product will also target the elderly to support living and improved mobility. It will form the basis for the next generation of gut health solutions for humans and pets to help prevent severe cases of gut inflammation.

The second ingredient will be a part of products creating the next generation of probiotics, according to Otmazgin. It will contribute to a better digestive system to reduce inconvenience due to stress in the gut, irritable bowel syndrome (IBS), or other conditions

Maolac will use the seed funding they just raised to build a state-of-the-art facility that will feature small-scale production capabilities. The facility will also be able to create analytics and samples for customers and clinical trials.

The Maolac team. Maya Otmazgin is in the center. Courtesy.

Ashkenazi Otmazgin tells NoCamels that the startup is in advanced discussions on joint development agreements with several leading Israeli companies in the food and supplements markets. It is also in talks with several of the world’s leading dairy protein producers and global dairy, ingredient, and supplement companies.

“We have several contracts on the table with potential global manufacturers that will produce for us. Our intention is to go global,” says Ashkenazi Otmazgin, citing both the US and Europe.

“We want to be the next generation of smart ingredient companies that create precision proteins for the food supplements and cosmetics industries with a portfolio of products with different functionalities,” says Ashkenazi Ashkenazi Otmazgin, “We want to bring active ingredients in small doses that won’t have an influence on taste, texture, or colors of existing food products, so people will love to consume those products.”

Ashkenazi Otmazgin also admits that in the future, the company will go to other markets, like the baby formula market. “Not full formula, but functional ingredients for the industry,” she adds.

For now, though, the focus is breast milk.

“There are so many companies that work in the alternative space and don’t look at breast milk — there is something quite repulsive when you talk about it. But adults can take real advantage of it,” she says.

Two-minute AI profile saves physician from time-consuming trawl of medical records

The average doctor’s appointment lasts about 20 minutes — 30 if you’re lucky. The physician sees dozens of patients, many with complex histories and taking a range of medications. Every detail is important, but there’s no way a doctor can keep track of it all.

Enter Navina (“Together we Understand” in Hebrew), a platform that uses AI to present a doctor, with an entire in-depth medical history that they can read and digest in two minutes.

It presents them with indications of risk factors, illnesses, and treatments of a patient, in an easy-to-read patient profile that can be accessed through a smartphone app. So they no longer need to trawl through a mass of records going back months and years from different hospitals and different specialists.

The company was founded by two former intelligence officers who revolutionized the use of AI during their time in the IDF to present military commanders with the data they needed, when they needed it.

They are now adapting that model to help busy doctors who need to have all relevant data at their fingertips the moment their patient walks into the surgery.

Navina says it turns “chaotic data into actionable patient portraits”. The portrait replaces disorganized patient data with a logical grid that makes it possible for a primary care physician to access a patient’s medical records within seconds.

Navina’s patient portrait provides a one-page summary with critical information from many sources, including images, emails, and faxes that are hard for physicians to find on their own. 

The team teaches the machine how to extract the proper data no matter what the source. To do this, Navina developed NLP (natural language processing) models which extract and structure the data through deep learning. with special codes for specific terminology.

Ronen Lavi, co-founder and CEO of Navina, compares the profile to what happens when you do a Google search on a person, where clicking to search will get you a page that is a roundup of the person with a photo, biography, information about life experiences, and articles correlated with the person. Similarly, Navina would present a contextual summary of a patient’s most pertinent medical information so that physicians can understand their health status.

Navina presents the doctor with a two-minute in-depth patient profile. Deposit Photos

“We built algorithms to do two main things. First, you have a lot of unstructured data — a lot of text. In a process called entity extraction, we extract all the right relevant codes out of the text, all the labs, all the meds, all the problems, all the diagnoses, through machine learning (ML) capabilities. Then, we build a knowledge graph that links all the data,” he tells NoCamels. 

“For a problem like blood pressure, [the profile] will show you the right medication, the right consult notes, the right lab tests, everything is correlated and explained to the physician. That’s the two main things we’re doing behind the scenes,” he says, noting that it’s about taking all the information, doing a correlation, and then creating a link that gives you a contextual understanding of your subject.

“What we saw was one of the main problems of physicians. They can address one or two problems — maybe three — if they know them in advance,” Lavi adds. “Five minutes before having to leave, the patient remembers – ‘Oh, hey, I have to ask you about this medication. I have to ask you about the new problem I have. I have to ask you about my family — and the physician hates this. The patient also hates it because they get the answer, ‘Sorry, my friend, I can’t deal with this right now. I have to go to the next meeting. And the patient doesn’t get the full attention he needs.”

The Navina app is currently being used by some 1,500 physicians and at leading clinics across the United States. The company is also marketing the product to health providers and risk adjustment teams , that predict future health care expenditures of individuals based on diagnoses and demographics.

Cutting through the clutter of patient data

The healthcare industry has amassed a huge amount of data over time, which has quickly become disorganized and difficult to manage. With so much data to analyze so quickly, health professionals often turn to AI to organize and interpret the data for improved insights.

This isn’t easy, Lavi tells NoCamels. In fact, it’s “complicated technology,” which explains why it hasn’t been done before. But Navina has a number of AI and medical experts on its team, including two co-founders with experience in the elite 8200 unit of the IDF, where they focused on bringing AI from theory into practice.

Lavi spent 24 years in 8200 and at the Prime Minister’s Office, where he established and led the AI Lab of Israel’s Military Intelligence, which collaborates with leading tech companies and academia to develop cross-functional platforms that provide insight into challenging data. Shay Perera, CTO at Navina spent a decade in elite intelligence units, where he was involved in R&D and held leadership positions. He also has a Master of Science in electrical engineering from the Technion with a specialty in machine learning.

Perera says a relative of his was diagnosed very late with cancer due to mistakes by the family doctor and his condition deteriorated as a result. The pair realized GPs were missing out on many critical diagnoses because they couldn’t absorb the volume of patient data they had to deal with.

The Navina team behind the app that turns chaotic data into clear information for doctors. Courtesy

Lavi and Perera were responsible for one of the greatest revolutions that took place in 8200 and later in the IDF – the smart data revolution that is presented to commanders in real-time. The two built the AI / ML-based information systems of the cyber units that processed data and upgraded the capabilities of cyber commanders and won a National Security Award for their efforts in 2018.

After being released from the army, the two used their knowledge and expertise in data, AI, and machine learning to make a difference in people’s lives. For Naviana, founded in 2018, the two replicated the data model they built in the IDF to implement it in health institutions around the world. 

“I think the gain for the patient is very obvious,” says Lavi, “They want to get everything to be addressed. And the physician should be with the patient, not with the computer. And that’s what Navina allows them to do because everything’s summarized for you in two or three clicks.”

“Navina is disruptive because it’s one of the first digital health applications that I know of, which the physician is actually willing to use. It’s not a burden. The machine behind the scene does a lot of stuff for them that allows them to understand the patient very easily. And every time I say that, people ask how did nobody think about it before and why hasn’t it been done.”

Funding will be used to support more than a dozen studies

A new university grant program in Israel with a budget of over $1 million will support researchers in their quest for new food technologies.

The ministries of Agriculture and Innovation, Science and Technology initiated the program with an emphasis on alternative proteins.

The ministries launched a call for proposals last Thursday, in collaboration with the Good Food Institute (GFI) Israel, a non-profit organization that seeks to promote research and innovation in food technology.

The food technology sector is a broad field that includes nutrition, packaging, food safety, processing systems, new ingredients and alternative proteins. These include plant-based meat, dairy and egg substitutes, dairy products, cultured meat and seafood, insect proteins, and fermentation products and processes.

Many of the technologies used in this field are based on academic research. 

The technologies of two major Israeli cultured meat companies, Aleph Farms and Future Meat, are based on bioengineering research developed by their respective co-founders, Professor Shulamit Levenberg of the Technion – the Israel Institute of Technology – and Professor Yaakov Nahmias of the Hebrew University of Jerusalem. 

Both are leading academics in the field of tissue engineering.

Ministry funding will support a dozen university studies offering science and technology solutions in the areas of cultured meat, fermentation processes and plant-based substitutes. 

These studies can be aimed at improving the final product or the production process itself, the ministries said.

The study is related to a problem in AI and robotics called autonomous decision-making under uncertainty.

Researchers at the Technion – Israel Institute of Technology found a way to simplify decision-making and problem-solving under uncertainty in a way that reduces the amount of information computers need to analyze.

A new peer-reviewed study published in the International Journal of Robotics Research, led by Prof. Vadim Indelman, who heads the Autonomous Navigation and Perception Lab (ANPL) at Technion’s Faculty of Aerospace Engineering, and Khen Elimelech, shows the feasibility of reducing the amount of time for computers to process information without compromising the success of completing a function.

“We demonstrate that we can significantly reduce computation time, without harming the successful execution of the task,” the researchers said. “We also demonstrate that computation efforts can be reduced even further if we accept a certain loss in performance loss that our approach can evaluate online. In an age of self-driving cars and other robots, this is an approach likely to enable autonomous online decision making in challenging scenarios, reduce response times, and achieve considerable savings in the cost of hardware and other resources.”

The study is related to a problem in AI and robotics called autonomous decision-making under uncertainty, which concerns the capability of AIs to complete tasks reliably and autonomously over time in an unpredictable environment.

Technion noted that autonomous agents often do not have access to the variables related to a particular problem and instead function based on a “belief” based on probability models and measurements.

Illustrative image of AI. (credit: PIXABAY)

Belief space planning

A major area of research in the new study was computationally efficient decision-making under these conditions, called belief space planning. In order to solve this problem, an AI must weigh the costs and benefits of a potential action, which requires the researchers to predict how the “belief” will change over time.

The findings may help researchers solve decision-making problems using simplification and show that there are ways to save considerable amounts of computation time without a loss of accuracy.

Forsight Raised $10 million in seed funding in March 2021.

Israeli medtech startup ForSight Robotics is developing a surgical robotic platform to deliver what it describes as high precision and cost-effective vision-saving surgery. Forsight just raised $55 million in a Series A round of funding led by The Adani Group alongside existing investors Eclipse Ventures and Mithril Capital.

Founded in 2020 CEO Daniel Glozman, Ph.D., Joseph Nathan, M.D. and Moshe Shoham, Ph.D, Forsight declares that its mission is to transform the practice of ophthalmic surgery through a next generation robotic platform combining “state of the art robotic microsurgical technology, advanced visualization technologies, and next generation cognitive computing methods.”

Joseph Nathan previously directed healthcare commercialization at the Technion Israel Institute of Technology, where he forged partnerships worth over $1 billion with global pharmaceutical and med-tech companies. Daniel Glozman has specialized in robotics for medical applications for over 20 years, heading R&D at Medtronic Ventor Technologies, Magenta Medical, Diagnostic Robotics, and Guide-X — which he also founded.

Israeli medical professionals have been behind many new procedures to save people’s vision over the years. Losing your vision is one of the most frightening things which can happen to people. Israeli startup OrCam produces new technology for the blind and other people with visual deficiencies. Its MyEye is wearable technology that can give eyesight to the blind. But it does not heal them.

Forsight Robotics, however, tries to heal blindness. The company explains that many of the leading causes of blindness worldwide can be prevented through timely surgical procedures. Ophthalmic microsurgery is complex and challenging, requiring many years to master, and there is a shortage of trained ophthalmic surgeons to meet the demand worldwide. Creation of a robotic surgical platform will allow one to deliver consistent excellent results while scaling up ophthalmic surgery to solve the problem of preventable blindness worldwide.

“These are exciting times that will enable the transformation of ophthalmic surgery from art to science,” Forsight’s Dr. Joseph Nathan once declared.

“We are thrilled to bring robotics into the world of ophthalmic surgery,” Dr. Glozman once said. “Our goal is to democratize this highly sophisticated procedure, enabling patients around the world to easily access the treatment that can restore their vision.”

The Technion has received its first human MRI research scanner made by Siemens. The device will operate within the framework of the May-Blum-Dahl Human MRI Research Center in its own 200 square meter facility in the Technion’s Joseph Center for Industrial Research.

The new Center, operated by the Faculty of Biomedical Engineering, will be used by researchers, professors, and students to carry out interdisciplinary research in a range of scientific and medical fields, as part of the Technion’s commitment to scientific excellence and the advancement of human health.

MRI is an important technology for structural and functional imaging of tissues and internal organs including the brain, is non-invasive, and avoids exposure to ionizing radiation. According to the Center’s manager, Dr. Dafna Link-Sourani of the Faculty of Biomedical Engineering, “the MRI study is characterized by being interdisciplinary and involving various engineering faculties (electrical, computers, mechanical, and material) and sciences (physics, chemistry, and biology), and of course medical research.”

According to Prof. Moti Freiman, who is the Center’s academic director, “Many researchers at the Technion have been waiting for the arrival of this essential research tool, and until now have been using other MRI centers for their research. The device will be available to researchers from a wide range of disciplines at the Technion and will also be used by industry researchers who want to deepen their R&D. The uniqueness of the new Center is its location within an engineering faculty, in an institute which is recognized as a global leader in innovative research, with a wide range of engineering fields. This will significantly help to advance innovation at the forefront of research and technology and to develop solutions to important clinical problems. There is no doubt that Siemens is pleased to have brought us the scanner, as we hope that Technion researchers can offer significant improvements in its performance.”

The commencement of the new center’s activity, expected later this year, is the result of ongoing fundraising led by Technion management, together with several Technion researchers: Professor Shulamit Levenberg, former dean of the Faculty of Biomedical Engineering; Dr. Moti Freiman, and Dr. Firas Mawase of the Faculty of Biomedical Engineering; Professor Tzipi Horowitz-Krauss of the Faculty of Science and Technology Education, and Dr. Yoad Kenett of the Faculty of Industrial Engineering and Management. 

This Center will be the first human research MRI center of its kind in the north of the country and is also set-up to explore children’s development. To that end, it includes a mock scanner, making it possible to acclimate children and infants to the imaging process prior to entering the actual device.

Netafim analysis shows corn grown with drip irrigation releases 53% fewer carbon emissions compared to flood-irrigated corn.

Corn is the third largest plant-based food source in the world and the most important crop in the United States, where 1.2 billion metric tons of corn were produced last year.

Corn is also cultivated in China, South America, India, Ukraine and across Europe, as food for both humans and livestock, as a biofuel and as a crude material for industrial purposes.

Now, results of a Life Cycle Analysis study show that the environmental impact of all those cornfields is significantly reduced by the use of drip irrigation as opposed to flood or sprinkler irrigation.

The study was conducted by EcoChain during 2020 for Israel’s Netafim, the global leader in sustainable precision irrigation solutions.

Highlights of the study:

  • Corn grown with drip irrigation releases 53 percent fewer carbon emissions compared to flood-irrigated corn and 39% fewer carbon emissions compared to sprinkler irrigation.
  • Drip-irrigated corn requires 24% less fertilizer than when it is grown with flood irrigation, and nearly 17% less fertilizer than when it is grown with sprinkler irrigation.
  • Drip-irrigated corn produces 45% more per kilograms per hectare when compared to flood, and 23% more when compared to sprinklers.

An earlier study showed that rice grown using Netafim’s drip irrigation technology out-produces conventional paddy rice farming, uses 70% less water, and diminishes methane emissions to almost zero.

“We’ve been showing the world how to grow more with less for nearly 60 years and our pioneering technology is now critical to mitigate the impacts of climate change,” said Netafim Global Chief Sustainability Officer John Farner.

“Today, farmers are not only challenged by record-high energy and fertilizer costs, but also increased pressure to reduce their overall environmental footprint, all while producing our global food supply,” said Farner.

“Adoption of precision irrigation for corn, along with other crops around the world, is critical to stabilize farmer livelihoods, reduce the carbon footprint of farming, and ensure a food-secure future.”

With 33 subsidiaries and 17 manufacturing plants worldwide, Netafim offers customized irrigation and fertigation solutions to millions of farmers, from smallholders to large-scale agricultural producers, in over 110 countries.