When Ovadia Harari (z”l) ’64, M.Sc. ’67 immigrated from Egypt with his family as a youth, who could have imagined the trajectory his life would take, and the impact he would have on the State of Israel? From those humble beginnings, Mr. Harari went on to become one of the best aeronautical engineers Israel has ever produced, a longstanding luminary of its defense industry, and a dazzling example of leadership. His distinguished work allowed Israel to flourish on the ground and in the skies, and made possible a trail of firsts that advanced Israel’s aerospace capabilities to the loftiest levels.
His journey through the ranks of Israel’s aerospace industry is the stuff of legends. Mr. Harari first served in the Israeli air force, and his deep passion for aeronautical technologies drew him to Israel’s only Faculty of Aerospace Engineering at the Technion, where he earned both his bachelor’s and master’s degrees.
He was at the forefront of Israel’s defense industry, influential in the development of Israel Aircraft Industries (IAI) – of which he served as the executive vice president and chief operating officer for more than 35 years. With Mr. Harari leading the charge, IAI achieved numerous monumental advances, including entering the unmanned aerial vehicle (UAV) market in the 1970s with the development of the IAI Scout, earning $1.28 billion in sales by 1989, joining the space race in the 1990s, and more, laying the foundation for Israel’s dominance in the aerospace arena.
Under his visionary leadership, IAI also tested the Arrow 1, the first family of anti-ballistic missiles for a new defense mechanism to protect Israeli citizens, which became the world’s first operational defense system against aerial missiles in 2000. Since then, the Arrow system has been upgraded multiple times and continues to provide protection to the State, serving as a testament to Israel’s unwavering commitment to security.
The events of the Six Day War highlighted the need for Israel to develop its own combat aircrafts. In the crucible of conflict, Mr. Harari played a pivotal role in the first project to fill this gap, which made history for its creation of Israel’s first ever home-grown defense aircraft. Led by IAI, the team successfully produced the Kfir, an all-weather multirole fighter jet developed based on the French model Mirage 5. More than 220 of these aircrafts were built. Soon after, Mr. Harari was also instrumental in creating its successor.
In an effort to replace the Kfir models, Mr. Harari spearheaded the IAI Lavi project as its chief engineer. Launched in February 1980, the program aimed to create an aircraft to be used for the close air support (CAS) and battlefield air interdiction (BAI) mission with a secondary air-defense mission. The resulting aircraft was a single-engine fourth-generation multirole fighter jet, taking flight for its maiden voyage in 1986 – a technological marvel that showcased Israel’s prowess on the global stage.
Though the Lavi project was discontinued soon after, it illustrated IAI’s advanced capabilities, and much of the technological knowledge gathered during its development helped make Israel’s first satellite launch into space in 1988 possible. Mr. Harari’s imprint on Israel’s aerospace landscape was indelible, his contributions immortalized in history.
Upon retiring from the aeronautical industry after an illustrious tenure with IAI, Mr. Harari was appointed as a guest professor at the Technion, a member of the board of Rafael Advanced Defense Systems, and chairman of the committee of the Aeronautical and Space Sciences in Israel, where his wisdom continued to shape the future of Israel’s defense.
Mr. Harari received numerous awards honoring his unparalleled dedication and groundbreaking achievements, including the Israel Defense Prize in both 1969 and 1975, and the most prestigious distinction awarded by the State of Israel, the Israel Prize in 1987, for his contributions to the IAI Lavi project.
With Rosh Hashana honey in mind, ISRAEL21c visits an apiary to see how BeeHero produces insights for beekeepers and growers trying to feed a growing world.
When I dip an apple slice in honey on the first night of Rosh Hashana this Friday, I’ll remember suiting up for a bee encounter at the largest private beekeeping operation in Israel on Sunday.
Members of the press were invited to Boaz Kanot Apiary in southern Israel to see how ag-tech company BeeHero monitors the wellbeing of hardworkinghoneybees in 200,000 hives on five continents.
Honey is, of course, a valuable commodity produced from nectar by honeybees.
However, bees’ main role is pollination. Bees, especially easily transportable honeybees, unintentionally pollinate about 75 percent of the crops we eat as they fly around collecting pollen from flowers to feed their eggs and larvae.
But honeybee colonies are declining due to disease, pesticides, adverse weather and other life-threatening conditions. There aren’t enough bees to sustain pollination for a rapidly increasing world population.
“Our mission is to future-proof the global food supply by saving bees,” says Eytan Schwartz, VP Global Strategy for BeeHero.
In 2017, Boaz Kanot’s son, Itai, founded BeeHero with Omer Davidi and Yuval Regev.
BeeHero’s IoT sensors inside beehives collect essential data on temperature, humidity, acoustics and other parameters.
The hive data is then correlated with outside data, such as weather conditions, and analyzed in the cloud by advanced algorithms and AI.
BeeHero’s sensor keeping tabs on a hive. Photo courtesy of BeeHero
Beekeepers get real-time insights about colony health and productivity. Farmers get real-time insights to help them plan pollination strategies.
“BeeHero is the first company to continuously log data from hives 24/7, providing more transparency into the hives than ever before possible, and producing more insights for beekeepers and growers around the world,” said CEO Davidi.
BeeHero monitors the bees in this almond orchard. Photo courtesy of BeeHero
Regev, the company’s CTO, said the bees’ constant communication gives each hive a unique acoustical signature.
When bees communicate stress — for example, the queen is gone or the hive is overcrowded or lacking water or food — BeeHero “translates” the conversation for the beekeeper, who can then take action to avoid colony collapse.
“By connecting the hive to the Internet, beekeepers don’t need to go into each hive to check what is going on. They can just go into the app where we provide information for beekeepers to do their job better,” said Regev.
“Last year, the mortality rate of hives was 48% for regular beekeepers [in the United States]. For those using BeeHero, the number dropped to 27%.”
Staying comfortable
Abigail Klein Leichman suited up at Kanot Apiary. Photo by Efraim Roseman/Government Press Office
BeeHero Chief Biologist Doreet Avni, and we reporters, put on protective suits before examining the system at work in one of many bee boxes at Kanot Apiary.
In 90-degree Fahrenheit heat, the overalls, head coverings and disposable gloves were mighty uncomfortable, helping to illustrate the advantages of the BeeHero system.
“Ordinarily, beekeepers have to suit up, go outside in any kind of weather and inspect hives frame by frame. In an operation with thousands of colonies it’s almost impossible to do this,” said Avni, who has been researching honeybees for over 30 years.
BeeHero Chief Biologist Dr. Doreet Avni showing a frame from a hive. Photo by Abigail K. Leichman
Furthermore, the bees don’t like their hives opened. It disturbs them and lets in ambient heat or cold. They have to work for hours to restore homeostasis inside the hive.
“For almond groves in California, the rule of thumb is not to open hives if the outside temperature is below 16 degrees Celsius [60.8F]. With our sensors, beekeepers open only those hives there are concerns about,” said Avni.
On that hot day, the bees were venturing out of the hive only to bring back water.
Avni said BeeHero isn’t the first company to attempt replacing manual inspections with sensors but the others used sensors that were too large, too disruptive or too expensive.
This is why BeeHero has become the world’s largest pollination services company. The New York Times gave BeeHero a 2022 Good Tech Award, and this year CNBC named the company to its Disruptor 50 list.
Buzz-iness model
BeeHero has raised a total of $64 million, employs 65, and is now facilitating 10 million hive samples daily.
The company’s clients are mainly in the United States and Australia. A clientele is building up in Europe and Africa. In Israel, BeeHero is used in apiaries such as Kanot. Sales and operations are in California; R&D in Tel Aviv.
A beekeeper checking a hive monitored with BeeHero’s sensor. Photo courtesy of BeeHero
Schwartz explains that beekeepers get the sensor technology for free.
“Our money comes from growers, for whom we broker the hives. If you need 10,000 hives and you’ve been ordering them from an apiary on the other side of the United States or Australia, by the time you receive them you might be receiving empty or half-empty boxes that cannot provide the pollination you need,” he said.
“You also don’t know where to place the hives, taking into account field conditions and crop density and variety. When you order from us, we give you the exact number of bees you need, and we tell you precisely where to place the hives, maximizing the bees’ ability to pollinate the crops.”
BeeHero’s “Precision Pollination as a Service” technology also lets growers check if the bees are actually pollinating the flowers.
Schwartz adds that “by creating better hives with more bees, you reduce the number of hives that have to transported from place to place. You get better pollination with fewer boxes. We reduce carbon emissions in this way.”
Sweet ending
Our tour of Kanot Apiary ended in the honey extraction shed, where workers uncap each frame and place it in a spinner so the honey flows into a collection pan and is piped to a different room to be jarred.
While pollen provides protein for the bees, nectar provides energy. They preserve nectar by turning it into honey – similar to humans canning vegetables for future use.
Avni told ISRAEL21c that in a commercial apiary, bees don’t need as much honey as they produce from the nectar they collect. Some apiaries leave half the honey in the frames and others extract it all. Either way, the bees are compensated by the addition of sugar syrup to make sure they have energy to continue the colony.
Honey being extracted from hives at Kanot Apiary. Photo by Abigail K. Leichman
An Israeli startup that uses artificial intelligence to diagnose cancer has unveiled a new solution that will help pathologists detect the specific treatments that will benefit breast cancer patients most.
Ibex Medical Analytics’ Galen Breast HER2 platform can accurately determine the expression in cancer slides of the protein HER2, which is responsible for the proliferation of breast cancer cells.
The platform uses AI to analyze the slides, identify the tumor cells and rapidly calculate the HER2 score of the tissue. The results are highlighted for the pathologist, who can review them and make a final decision as to what cancer treatment is best for each patient.
Traditionally, pathologists evaluate HER2 in tumor samples visually, which may result in varied interpretations. The Galen Breast HER2 scoring system quantifies the sample’s expression of the protein into four standard categories to help the pathologist make a more accurate decision.
The technology was developed and validated by Ibex in collaboration with AstraZeneca, the British-Swedish multinational biotechnology company, and Daiichi Sankyo, a Japanese pharma company.
“We are committed to providing pathologists with the most comprehensive AI platform as they implement digital pathology,” said Issar Yazbin, VP Product Management at Ibex Medical Analytics.
“In addition to HER2, we are now able to support full review of breast biopsies and excisions, distinguish between multiple types of invasive and non-invasive cancer, detect more than 50 malignant and non-malignant morphological features, and provide the underlying technology for automated quantification of additional prognostic and predictive breast biomarkers such as Ki-67, ER and PR.”
Advanced technology identifies pairs of drugs that can fight disease together, in microscopic doses.
Researchers have developed a pioneering AI “matchmaker” that pairs together existing cancer drugs for use in nanomedicine.
Prescribing a combination of two or more medications is already an established practice – known as combination therapy — that can prove highly effective.
But a team at Technion – Israel Institute of Technology, in Haifa, has gone beyond simply identifying separate medications that will work well together.
These scientists have developed technology that singles out drug pairs whose molecular structure allows them to join together chemically as nanoparticles, measuring just a millionth of a millimeter. Their findings are published in the Journal of Controlled Release.
Administering medicines as nanoparticles – or nanomedicines – has many advantages, allowing doctors to use lower doses, target specific cells and minimize side effects.
The artificial intelligence tool developed at the Technion trawls published articles on existing cancer treatments, gathering information that allows it to predict pairs of drugs that will work well together and, crucially, that are able to chemically assemble into combined nanoparticles.
PhD student Dana Meron Azagury and Prof. Yosi Shamay. Photo courtesy of Technion Spokesperson’s Office
Prof. Yosi Shamay describes the new approach as a “synergy of synergies” or a “meta-synergy.”
The first synergy is the combination of two drugs so that their combined effect is greater than using each of them in isolation.
The second synergy is identifying which of these drugs pairs can be used in nanomedicine, bringing a whole array of new benefits.
The AI tool has so far proposed 1,985 possible nanomedicine drug combinations to treat 70 types of cancer.
One example is combining Bortezomib (a blood cancer drug) and Cabozantinib (a liver, kidney and thyroid cancer drug) as treatment for head and neck cancer. This combination has proven effective and caused fewer side effects than using either of the drugs individually.
Drug synergy prediction produced by the model. Photo courtesy of Technion Spokesperson’s Office
Standard drug combinations combat a tumour more effectively than they would do individually and may prevent the tumour from developing resistance to treatment.
Above and beyond
Master’s student Ben Friedmann. Photo courtesy of Technion Spokesperson’s Office
Nanomedicine combinations go above and beyond. They target cancer cells more precisely, are more successful at fighting tumors, require smaller doses, are less toxic, and minimize side effects.
“The development of meta-synergy on the nanometric level is a very complex challenge,” said Shamay.
“It necessitates the introduction of [at least] two drugs simultaneously into the same delivery system that would lead them to the desired destination in the body,” he said.
“Our research has shown, both in a computational demonstration and in live experiments, that the combination we proposed indeed leads the drugs to the tumor and releases them there — and that this therapy is very effective in treating the disease.”
The study, conducted at the Shamay Lab for Cancer Nanomedicine and Nanoinformatics, was led by PhD student Dana Meron Azagury, whose focus was on the biology and chemistry side of the research, and master’s student Ben Friedmann, who developed the AI model.
Reps from 10 startups spend four days meeting with British executives, investors and policymakers in collaborative events and discussions.
A delegation of climate-tech innovators from Israel enjoyed a morning welcome reception at the British House of Lords, opening a groundbreaking event hosted by Lord Ian Austin from June 26-29.
The UK-Israel Climate First Delegation was organized by Israeli climate-tech accelerator Climate First with the UK-Israel Business Bilateral Chamber of Commerce, which has fostered growth and investment between the UK and Israel since 1950.
Representatives were from Helios (large-scale carbon capture), Hydro X (hydrogen storage and transport), Criaterra (sustainable building materials), Daika (natural materials from wood waste), Gigaton Carbon (ocean-based CO2 removal and storage), Momentick (monitoring greenhouse gas emissions), QD-SOL (green hydrogen), Zohar CleanTech (decentralized waste disposal systems), Luminescent (isothermal heat engine) and NakAI (maritime cleaning and inspection robots).
“Our mission at Climate First is to empower companies that can help us meet our net-zero goals,” said Nadav Steinmetz, cofounder and managing partner of Climate First.
“Through this UK-Israel delegation, we are furthering that mission by bridging the gap between innovative Israeli companies and the UK’s vast network of investors, policymakers and business leaders. Together, we can unlock potential and accelerate the global transition towards a climate-resilient future.”
During their visit, the delegates interacted with British executives, investors and policymakers in collaborative events and discussions. Meetings were scheduled with Lord Browne, founder and chairman of BeyondNetZero; Generation Investment Management Just Climate Fund; Barclays Sustainable Impact Capital; J.P. Morgan ClimateTech; BlackRock Decarbonisation Partners; the European Bank for Reconstruction and Development (EBRD); and representatives from Prince William’s Earthshot Prize.
Prof. Gideon Grader awarded the Institut de France prize for developing the E-TAC process that enables splitting water into hydrogen and oxygen.
Prof. Gideon Grader from Israel’s Technion-Israel Institute of Technology was recently awarded the Grand Prix Scientifique research grant by the Institut de France for developing innovative green hydrogen technology.
The Institut de France, a nonprofit organization founded in 1795 that unites five French academies, encourages research, supports creativity, and funds many humanitarian projects.
Grader has developed a process — dubbed E-TAC — along with his Technion colleagues, which splits water into hydrogen and oxygen by decoupling the production of the two gasses. This is achieved by circulating electrolyte solutions at different temperatures through the electrodes.
The professor later developed unique electrodes that move continuously between the separated sites where the hydrogen and oxygen are produced simultaneously, allowing for the E-TAC process to be continuous and not an isolated action.
The scientists say the method will enable long-term operation at a low cost and easier scaleup to industrial level.
In 2019, green hydrogen company H2Pro was founded using the E-TAC technology. The 100-strong company has since raised over $100 million from venture capital funds, including Bill Gates’ BEV fund, TEMASEK, and Horizon Ventures. H2Pro was recently selected by BloombergNEF as one of the most promising companies for solving the climate change crisis.
News arrives from Israel’s Technion Institute that they have developed a stable catalyst that can split water at extravagantly low energy-levels – and haven’t ruled out being able to split water with energy levels obtainable from the sun.
In fact, the hope of rapid transformation in the field is one of the reasons that AkzoNobel Specialty Chemicals and Gasunie New Energy have partnered in a project aiming at “large scale conversion of sustainable electricity into green hydrogen via the electrolysis of water.”
Intended for Delfzijl in the Netherlands, the installation would use a 20MW water electrolysis unit, the largest in Europe, to convert sustainably produced electricity into 3,000 tons of green hydrogen a year – enough to fuel 300 hydrogen buses. A final decision on the project is expected in 2019.
Why — and why now — is green hydrogen such a big, big deal? Two reasons, really.
One, you’d solve the energy-storage problem of solar power, in a snap — you’d just split water to make hydrogen. (Don’t worry, when you use the hydrogen to, for example, power a car, the water re-forms out of the tailpipe. This isn’t a Water vs Fuel situation.)
Two, you’d have an affordable, biobased (hydrogen fuel) fuel you could make anywhere, in quantities exceeding the petroleum industry.
Scientists have not been able to crack the problem, in part because the catalyst that Nature evolved is complex, and has been described as the “the strongest biological oxidizing agent yet discovered”.
It comes down to controlling manganese, which is abundant and cheap, but the manganese catalysts yet developed never last and consume way too much energy.
Consequently, though Toyota has been working very hard on hydrogen vehicles, hydrogen as currently obtained via natural gas reforming is not green, nor competitively affordable. So, there might be a hundred hydrogen refueling stations in the US, about half of them in California.
In an article published in Nature Catalysis, Assistant Professor Galia Maayan of the Technion-Israel Institute of Technology presents a molecular complex (also called an artificial molecular cluster) that dramatically improves the efficiency of water oxidation. It does so by biomimicry – a field of engineering inspired by nature (bio=life, mimetics=imitation). In this specific case, the inspiration comes from the process of photosynthesis in nature.
The molecular complex developed by Maayan is expected to change this situation. This cluster, which is actually a complex molecule called Mn12DH, has unique characteristics that are advantageous when splitting water.
Experiments conducted with this complex demonstrate that it produces a large quantity of electrons (electric current) and a significant amount of oxygen and hydrogen, despite a relatively low energetic investment. No less important, it is stable – meaning that it is not easily demolished, like other Mn-based catalysts.
An improved plasma thruster using Israeli technology can steer satellites out of harm’s way while using less power than chemical forms of propulsion.
Space is getting crowded.
In addition to the thousands of satellites already orbiting Earth, about 14,000 new satellites are expected to be launched by the end of the decade.
That translates into about 9,000 tons of space debris, says Igal Kronhaus, Technion professor-turned-space-tech startup entrepreneur.
It’s gotten so bad that the United States issued new regulations in 2022 that “won’t allow the launch of a satellite unless it has a convincing capability to move out of the way after five years from the end of the mission,” Kronhaus says.
Kronhaus started his company, Space Plasmatics, in 2021 to address the space junk problem while also improving satellite propulsion in general.
Space Plasmatics is developing plasma thrusters designed to navigate satellites to a different orbit or even back to Earth, using ionized gas in an electric field rather than the traditional propulsion method of chemical reactions.
The thrusters get their power from solar cells that are already mounted on the satellites. Solar-powered electric propulsion is now used in almost every satellite. High-powered versions could even propel manned spacecraft for missions to the Moon and Mars.
Electric propulsion was originally conceived in the 1950s as a way to get people to Mars – long before Elon Musk popularized the concept for the 21st century.
“Back then, there were no envisioned applications, other than human space travel,” Kronhaus tells ISRAEL21c.
Now, with satellites handling everything from GPS navigation to cell phone communication to spying on enemy nations, the use case has arrived.
Space hardware
Kronhaus was an assistant professor of aerospace engineering at the Technion for seven years. The technology for Space Plasmatics, he says, has been “incubating in my lab for the past decade.”
Space Plasmatics cofounder Andrew Pearlman. Photo courtesy of Space Plasmatics
“It’s very unusual for a professor to start a company,” Kronhaus says. “I’m paving a unique path here.”
Space Plasmatics cofounder Andrew Pearlman is a serial entrepreneur who has raised more than $150 million for 10 Israeli companies since his arrival here from the United States in 1981. He describes his role in Space Plasmatics as Kronhaus’s “coach, copilot and righthand man.”
“We’re exclusively space hardware,” Kronhaus says. “We can’t re-use our engines in cars or planes. We’re making a real, physical product, not just writing code. That makes it more difficult to convince investors to come in.”
But some have.
Israel Aerospace Industries (IAI) took an interest in Space Plasmatics and invited the company to participate in the Astra incubator, co-run by the accelerator Starburst and IAI. The Israel Innovation Authority has also helped fund Kronhaus’s vision.
The Knesset last year pledged to invest the shekel equivalent of $180 million in the civilian space industry over the next five years. Start-Up Nation Central estimates the worldwide space economy is worth $400 billion.
Larger satellites
In June, Kronhaus signed a deal to develop its plasma thrusters for IAI’s satellites. This deal points to a shift in the industry.
For much of the past decade, tiny nanosatellites (CubeSats), just a few tens of kilograms in weight, were assumed to be the future of the industry.
Israel excelled at these small satellites.
“It’s no secret that we can’t launch over neighboring Arab states. And we don’t build huge rockets. So, we build smaller rockets with a smaller payload that are launched in the wrong direction!” Kronhaus says.
That “wrong direction” requires more fuel, “so we have to reduce the payload we’re carrying even further.”
But now, the main market seems to be in bigger satellites that weigh several hundred kilograms, Kronhaus says. It makes economic sense – bigger satellites carry bigger payloads, which results in faster ROI.
Larger satellites are also what IAI specializes in.
The IAI arrangement is positioned as a trial to see if Space Plasmatics can scale up to IAI’s needs. Kronhaus is convinced they can and that IAI will become a paying customer.
How it works
For any rocket scientists reading this, here are a few technical details.
Kronhaus’s plasma thrusters are essentially a better version of a Hall thruster, a model developed in the former Soviet Union in the 1960s.
The thruster does need some fuel but uses nonflammable, noncombustible gases such as xenon and krypton.
Space Plasmatics’ microHET thruster prototype. Photo courtesy of Space Plasmatics
“The inert gas is in the propellant tank on the satellite,” Kronhaus says. “The Hall thruster feeds a certain amount of it to the engine at a constant rate. The electric field gives the gas the energy to ionize. There’s a nice blue plasma flame as the ions are accelerated. This acceleration is what produces thrust.”
Kronhaus says that Space Plasmatics’ tech also reduces the weight of the satellite, because normally it’s the fuel tank that contributes the most weight to the device.
Hall thrusters, however, are not for every space application. Landing on the Moon or shooting missiles require the higher power of chemical propulsion.
Space Plasmatics is still developing its thrusters. Assuming the company continues with IAI and/or raises more money, Kronhaus and Pearlman say a full working version of the company’s product should be ready by Q2 2025.
Competition
Space Plasmatics has plenty of competitors: Austria-based Enpulsion; Thrustme and Exotrail from France; Astra and Rafael from Israel.
However, Kronhaus is banking on Space Plasmatics’ high thrust and high fuel economy. “We improve the performance of a Hall engine at low power,” he says.
It doesn’t hurt that Kronhaus has a PhD in electric propulsion and is considered an expert in the field – in Israel and beyond.
Will Kronhaus’s technology and Pearlman’s business savvy be enough for this four-person company in Haifa to make a dent in the space-tech space? We’ll be watching.
Bacteria can be found everywhere, and some are bad and cause illnesses, but some do more good more than harm.
There are thousands of kinds of bacteria – microscopic, single-celled organisms that are among the earliest known life forms on earth and live in every possible environment all over the world. They might be airborne or found in water, plants, soil, animals and even humans, where some cause dangerous diseases such as salmonella, pneumonia, meningitis, tuberculosis, anthrax, tetanus and botulism.
However, many bacteria, including the ones that comprise the human gut microbiome, do good rather than harm. Bacteria can even be turned into tiny factories that manufacture needed products.
Now, researchers at the Faculty of Biotechnology and Food Engineering at the Technion-Israel Institute of Technology in Haifa have developed “bionic bacteria” that have many potential applications in industry.
Among those applications are the targeted release of biological drugs in the body using external light and other precise medical uses, sensing hazardous substances in the environment and the production of better fuels and other compounds.
The study was led by Assistant Prof. Omer Yehezkeli and doctoral student Oren Bachar, and co-authored by doctoral student Matan Meirovich and master’s student Yara Zeibaq. Their work has just appeared in the international edition of Angewandte Chemie under the title “Protein-Mediated Biosynthesis of Semiconductor Nanocrystals for Photocatalytic NADPH Regeneration and Chiral Amine Production.” The journal, which is published by the German Chemical Society, officially described it as a “hot paper.”
“My research group deals with the interface between engineering and biotechnology at the nanoscale level,” said Yehezkeli. “Our goal is to blur the current boundaries between the different disciplines, and mostly between nanometer materials and biological systems such as bacteria. In our research, we use the unique properties of nanoscale particles on the one hand, and the tremendous selectivity of biological systems on the other, to create bionic systems that perform synergistically.”
Nanoscale semiconductor particles are usually produced in chemical processes that demand high temperatures and organic solvents. In the new Technion study, the researchers were able to create – using engineered proteins – an environment that makes possible the growth of nanometer particles under biological conditions and at room temperature. In turn, the grown nanoparticles can lead to light-induced processes of biological components.
“The use of engineered proteins for the self-growth of nanomaterials is a promising strategy that opens up new scientific horizons for combining inanimate and living matter,” added Yehezkeli. In the current study, the researchers demonstrated the use of engineered proteins to grow cadmium sulfide (CdS) nanoparticles that are capable of recycling nicotinamide adenine dinucleotide phosphate (NADPH) with light radiation.
“This is an essential electron donor in all organisms that provides the reducing power to drive numerous reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology with light radiation. NADPH is crucial in many enzymatic processes and therefore its generation is desired,” Yehezkeli explained.
CdS nanoparticles have applications as an excellent photographic developer for the detection of cancers and other diseases, and in the treatment of cancer cells. The antibacterial and antifungal biological activity on various foodborne bacteria and fungi can also be studied with the use of CdS nanoparticles.
Enzymes are a common biological component involved in all living cell functions. Billions of years of evolution have led to the development of a broad spectrum of enzymes responsible for the many and varied functions in the cell, said Yehezkeli.
In their study, the researchers showed that NADPH could be produced (recycled) using the genetically modified protein made up of 12 repeating subunits that form a donut-like structure with a three-nanometer “hole” (three-billionths of a meter in diameter).
“This is a preliminary demonstration of the direct connection of inanimate matter [abiotic] with living matter [biotic] and a platform for its operation in a way that does not exist in nature,” concluded Yehezkeli.
“The technology we have developed enables the creation of hybrid components that connect these two types of materials into one unit, and we are already working on fully integrated living cells with promising initial results.
We believe that beyond the specific technological success in the production of NADPH and [various other] materials, there is evidence of the feasibility of a new paradigm that may contribute greatly to improving performance in many areas including energy, medicine, and the environment.”
“There is evidence of the feasibility of a new paradigm that may contribute greatly to improving performance in many areas including energy, medicine, and the environment.”
Israeli food-tech startup More Foods has announced a new partnership with Tivall, a vegetarian frozen food brand owned by food giant Osem-Nestlé.
More Foods makes high-protein, high-fiber meat alternatives from pumpkin and sunflower seeds. Its products are served in over 100 Israeli restaurants as well as restaurants in the UK and France.
The startup says its high-protein product uses the seeds in a way that allows for textures and flavors that are not usually found in meat substitutes, mimicking the variety available for meat eaters.
The collaboration with Tivall, which is based on Kibbutz Lohamei HaGeta’ot in northern Israel, will allow More Foods to expand its distribution to meet the growing demand for clean, plant-based products.
This partnership marks Tivall’s first time working with a food-tech startup.
“We are proud to partner with the Osem-Nestlé Group and combine our unique product offering with their market accessibility,” said Leonardo Marcovitz, founder of More Foods.
“This collaboration represents an important milestone in our journey to broaden our market presence, reach a larger customer base, and further our mission to make nutritious meaty center-plate plant-based products more accessible to consumers worldwide,” he said.
More Foods was founded in 2019 and is headquartered in Tel Aviv.