A startup that generates detailed 3D maps of underground utilities without the need for excavation is expanding into the UK as part of a project with one of the country’s largest railway infrastructure companies. 

Tel Aviv-based Exodigo helps companies carry out construction projects by combining 3D imaging and AI technologies with GPR (ground penetrating radar) and electromagnetic sensors to give a clear picture of what’s underground.

Coles Rail used Exodigo’s technology to scan and map a project in Birmingham for part of a light rail expansion that will connect to the city’s Curzon Street Station.

The UK-based company encountered “uncharted services” that were not noted on any existing records. Using Exodigo, Coles Rail was able to detect over 280 below ground utility lines (including 51 additional lines that no other locator or records had detected), providing invaluable data that reduced redesigns and delays.

Exodigo’s tech can identify water and gas pipes, electricity cables, water sources, and other buried obstacles that could cause leaks, explosions or unexpected delays. Actual excavations are time consuming, inaccurate, expensive, and can cause leaks, explosions, or unexpected delays. 

“Redesigns and service strikes as a result of incomplete or inaccurate subsurface mapping continue to be a problem in the UK,” said Trevor Moore, UK Director of Exodigo.

“In my time in the industry, I have seen these issues cause costly delays to critical projects and it puts lives at risk. Exodigo’s technology has the potential to mitigate many of the risks associated with large infrastructure projects by providing comprehensive information about what lies beneath the surface.”

Hamish Falconer, Project Manager on the rail extension for Coles Rail, said: “Excavating around buried services is one of our biggest risks, and the stat plans provided by statutory undertakers are in large part inaccurate. 

“Exodigo’s surveys provide us with much more reliable data that can then be used to select safer excavation techniques around known services.”  

Three researchers have been awarded top honors in the EuroTech Future Award, beating out 34 other participants. The jury evaluated the impact of the candidates’ work on achieving global sustainability goals, the excellence of their research, and their ability to effectively communicate their research to non-experts, including policymakers and citizens.

Anders Bjarklev, President of the Technical University of Denmark and President of the EuroTech Universities Alliance, emphasized the importance of the research community in addressing the challenges faced by Europe and global society. He highlighted the passion, pursuit of knowledge, and innovative spirit of the talented young researchers from the six universities involved in the EuroTech Future Award.

The third prize was awarded to Dinesh Krishnamoorthy, an assistant professor at Eindhoven University of Technology. His research focuses on applying artificial intelligence in medical research, specifically in personalized insulin dosing for diabetes care. Krishnamoorthy’s work aims to develop AI algorithms that can automatically determine the optimal insulin dosage for individual patients, making diabetes management more affordable and accessible.

The first prize went to Charlotte Vogt, an assistant professor at the Israeli Technion. Vogt’s research centers around carbon dioxide hydrogenation catalysis. She believes that catalysts play a crucial role in addressing global warming by converting CO2 into useful materials or fuels. Vogt’s work focuses on developing new and improved catalysts through spectroscopic experiments to enhance the efficiency of CO2 conversion processes.

The second prize was awarded to Zongyao Zhou, a postdoctoral scientist at EPFL in Switzerland. Zhou’s research focuses on membrane-based technologies for wastewater recovery and the exploitation of green energy. He has developed a microporous polymer membrane that can effectively remove antibiotics and heavy metal ions from drinking water and extract lithium ions from seawater. Zhou’s research aligns with the United Nations’ Sustainable Development Goals, particularly in promoting clean water and sanitation and affordable and clean energy.

The EuroTech Universities Alliance, a strategic partnership of leading European science and technology universities, aims to build a strong, sustainable, sovereign, and resilient Europe. The alliance’s partners contribute their excellence in research and education and actively engage in vibrant ecosystems and service to society. Together, they collaborate to accelerate research in high-tech focus areas and advocate for change, with a strong presence in Brussels.

The EuroTech Future Award recognizes the outstanding contributions of young researchers from the EuroTech Universities Alliance in securing a sustainable future. The winners’ research demonstrates their commitment to addressing global challenges and making a positive impact on society. 

How can personalized and more effective treatment for insulin requirements be achieved through N’s accurate predictions?

N accurately predict insulin requirements for individual patients, leading to personalized and more effective treatment.

The second prize went to Lavinia Heisenberg, a PhD candidate at the Technical University of Munich. Heisenberg’s research revolves around the development of sustainable materials for construction. She is working on creating bio-based composites that can replace traditional, resource-intensive materials like concrete and steel, thus reducing environmental impact without compromising structural integrity.

The first prize was awarded to Jean-Paul Moreau, a postdoctoral researcher at École Polytechnique Fédérale de Lausanne. Moreau’s research focuses on the development of sustainable energy storage solutions. He has been working on a new type of flow battery that uses abundant and non-toxic materials to store renewable energy. This technology has the potential to revolutionize the energy storage sector and facilitate the widespread adoption of renewable energy sources.

The EuroTech Future Award recognizes the importance of research in driving sustainable development and addressing global challenges. Through their innovative work, these young researchers have shown their commitment to finding solutions that can have a real impact on society. Their ability to effectively communicate their research to policymakers and citizens is also crucial in ensuring that their findings are translated into practical applications and policies.

The EuroTech Universities Alliance, consisting of six leading technical universities in Europe, plays a vital role in fostering collaboration and knowledge exchange among researchers. The EuroTech Future Award is just one example of how the alliance supports and recognizes outstanding research that contributes to a sustainable future.

With the recognition and support provided by the EuroTech Future Award, these three researchers have an even greater opportunity to further develop their work and make a meaningful contribution to achieving global sustainability goals. Their dedication and expertise serve as an inspiration to the research community and demonstrate the potential of science and technology in shaping a better future for all.

In a 1931 essay, Winston Churchill wrote about how he sees the future of food production: “We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium,” he wrote.

Fast forward some 90 years, and Churchill’s prediction is coming true, thanks in part to Israeli food-tech company Aleph Farms, which has developed a unique method to cultivate steak meat from isolated cow cells.

First to develop cultured steak

“We’re the first company that has managed to develop cultured steak. Not ground beef or nuggets — an actual steak,” says Aleph Farms’ Senior Manager of Marketing Communication Yoav Peer. 

Aleph Farms’ steak developed from cow cells. Photo by Yulia Karra

The company’s primary vision is not dissimilar to that of Churchill — to advance food security through the ability to produce meat independent of climate change and dwindling natural resources. 

The company grows only the edible parts of cows, using stem cells to generate meat. The focus is solely on beef for now, because of the taxing environmental impact of cattle-raising and because beef is considered the highest quality type of meat. 

The Rehovot-based startup, established in 2017, now boasts 150 employees, the majority of whom work in R&D. 

And it shows. In Aleph Farms’ offices, biologists and biochemists pop from room to room in white coats, giving a sense that you are inside one giant medical lab.

“Aleph Farms was established as an initiative of Strauss Group [one of the largest food manufacturers in Israel] and Technion-Israel Institute of Technology, with the cooperation of private investors and the government,” Peer tells ISRAEL21c.

Cultured steaks in supermarkets by 2026

Aleph Farms has been generating quite a buzz recently. It became the first to cultivate beef in space in 2019, and even boasts Hollywood star and environmental activist Leonardo DiCaprio as one of its investors. 

Aleph Farms’ Talent Acquisition Manager & Human Resources Business Partner Orit Berman with Israeli Arabs participating in the company’s social action program. Photo courtesy of Aleph Farms

The company is also part of a social-action campaign that works to integrate Israeli Arabs into the country’s high-tech sector. 

The actual product is expected to hit the market by the end of this year, starting with select restaurants once Aleph Farms receives regulatory approvals from Israeli Health Ministry and Singapore’s Health Agency. 

Why those two countries?

“Israel and Singapore share a lot of challenges related to food security,” says Peer.

“They don’t have enough resources to feed the local population, so they’re looking at cultivated meat that could be produced anywhere without taking up land and water needed for cattle.”

In the initial stages, Aleph Farms will produce roughly 10 tons of cultured steak per year, and in the future establish additional production facilities. “The goal is to get to supermarkets by 2026,” Peer says.

One of the biggest challenges is to produce at a reasonable cost. 

“It requires innovation in production to make the process more efficient. So, in the beginning it is going to be priced similarly to premium beef. But we hope to reduce the cost within a few years from our launch, until we reach price parity with the broader beef market,” says Peer.

From a fertilized egg to a steak

The first batch of cells the company worked with came from a fertilized egg of a cow named Lucy from California. Lucy apparently was extremely fertile and genetically superior compared to “average” cows. 

“Lucy has children all around the world,” Peer says. He adds that picking a donor is extremely important in order not to end up with “a full tank of problematic cells” from which the meat would be cultivated. 

But how does a fertilized egg from a living cow end up as a beefsteak? To answer that question, we turn to Director of Differentiation at Aleph Farms Natali Molotski.

Director of Differentiation at Aleph Farms Natali Molotski. Photo by Yulia Karra

“To undergo that process, cells need to take on specialized roles, not just multiply. We start working with cells when they are pluripotent,” she says. 

Most of us know pluripotent cells by their “mainstream” name — stem cells. Stem cells can become any type of cell, under the right guidance. 

“You take an embryonic cell and guide it to be whatever you want — muscle, connective tissue or fat cells. Getting the cells to differentiate in the right way is what my team focuses on,” Molotski tells ISRAEL21c. 

“We know how this process happens in the cow’s body, but it takes nine months or so. We need to replicate that process in a few days to reduce production cost. We had to learn to mimic the natural process of cell development, while dealing with regulatory constraints because at the end of the day people are going to eat it. It’s a huge challenge.”

Slaughter-free

The trickiest aspect in the development of cultured meat is recreating the texture, such as tissue and blood vessels. “You need to feed the cells the right food in order for them to have the same taste as animal meat.”

The cells are fed an “animal cell culture media” developed exclusively by Aleph Farms — and it is, well, also cultured. 

“The common media consists of serum that is derived from cows. So we developed unique media at this company that is without serum, and later we got rid of all animal components [in cell food],” says Molotski.

“When you work in tissue culture with cells, you don’t even think about it. But when you’re producing it for cultured meat, you can’t feed the cells something that comes — although indirectly — from animal slaughter.”

Even with the most exclusive and expensive food, some cells will not grow up to be steaks. 

“We have a machine here that was used for PCR coronavirus tests,” says Molotski. “It helps us extract the DNA and see which cells are more suitable for muscle tissue, for example, and which will not make it to the next round of development.” 

Why not simply extract grown cells from a specific body part of an animal and cultivate the meat that way, saving time that it takes to grow a cell from scratch? 

“That would be quicker and cheaper,” she concedes. “But, these cells die very quickly. Our cells can be in use forever, so you don’t have to go each time and extract new ones. You also need to take into consideration the issue of genetic stability.”

Although the company now is hyper focused on cultured meat, Aleph Farms’ ultimate vision is lab cultivation of all animal products “from leather to collagen,” adds Peer. 

In a huge step towards the future of power generation and propulsion, a team led by Associate Professor Beni Cukurel at Technion – Israel Institute of Technology, has designed a micro gas turbine using additive manufacturing (AM), also known as 3D printing. This revolutionary development presents an ingenious approach towards the ‘Design for Additive Manufacturing’ principle, significantly challenging conventional manufacturing paradigms.

Geometric Technology Demonstrator of Additively Manufactured Pre-Assembled Micro-Turbojet Engine. Photo via Technion Turbomachinery and Heat Transfer laboratory.

Unlike conventional manufacturing techniques, Cukurel’s team and the Turbomachinery and Heat Transfer laboratory tapped into the potential of AM in its purest form. In his words, “When you’re using [AM] just as another manufacturing technique, you’re not really fully capitalizing on the benefits of additive manufacturing.” Rather than simply integrating AM as an alternative tool, the team reimagined it as a core resource, creating designs a priori to satisfy constraints and leverage the benefits of AM.

At the heart of their research are micro gas turbines, designed for proportionate power generation. Cukurel defines micro gas turbines as systems capable of generating electricity below 300 kilowatts and thrust below two kilonewtons. Taking the AM approach, the team started their first project, a 5cm scale micro gas turbine that could potentially provide 300 watts for a drone. The micro turbine offers a significant increase in flight time due to its higher energy density compared to conventional batteries.

Functionality of various path indicated by gas and fuel path. Image via Technion Turbomachinery and Heat Transfer laboratory.

The team didn’t stop at the micro gas turbine; they further leveraged their AM knowledge during the COVID-19 crisis. They innovated a pre-assembled, self-supported turbomachinery design for medical ventilators. “We transitioned this know-how that we developed in pre-assembled self-supported turbomachinery architectures to gas turbines,” said Cukurel.

The breakthrough offered by these pre-assembled, self-supporting micro gas turbines hinges on their on-demand availability and cost-effectiveness. The primary cost is confined to machine time and power consumption, considerably reducing production expenditure.

Cukurel acknowledged that such innovative work was only possible due to a fruitful collaboration with von Karman Institute for Fluid Dynamics, Izmir Katip Celebi University, and PTC. The NATO-funded project saw each party bring its unique expertise to the table. Von Karman Institute provided high-fidelity simulation for aerodynamics and combustion, Izmir Katip Celebi University lent its computational fluid dynamics skills for assessing the load-bearing capacity of hydrostatic bearings, and PTC offered its extensive knowledge in AM technologies, in particular through its powerful CAD design and simulation framework, Creo.

Self-supported Rotor (turbine-shaft-compressor) and Encompassing Self-supported Stationary Housing (recuperator, nozzle guide vanes, bearing housing, combustor, diffusor). Photo via Technion Turbomachinery and Heat Transfer laboratory.

Optimizing performance with additive manufacturing

Addressing the constraints of design for additive manufacturing, Cukurel explains that they began by developing a reduced order model. In simple terms, this is an optimized model that maintains the crucial aspects of the original system, but simplifies it for easier analysis and use.

In designing a jet engine, traditionally, aerodynamics takes center stage. The goal is to achieve peak performance in terms of thermodynamics, translating to the thrust-to-weight ratio and specific fuel consumption, or in other words, power and energy density. However, this approach falters when it comes to miniaturized engines.

“What we have created are reduced order models that capture all the disciplines present in the engine. These include aerodynamics, heat transfer, rotor dynamics, and combustion, among others,” Cukurel explains. Think of it like condensing a symphony into a solo performance – you need to maintain the essence of the piece while also accommodating the capabilities of the lone performer.

He continues to detail how they’ve created a multidisciplinary optimization environment that a priori knows all the constraints of additive manufacturing. This basically means they’ve designed a system that, from the beginning, understands the limits of what it can create. It’s like an experienced architect who knows not to design a roof with angles too steep for the building materials to support.

They’ve ensured that every layer built during the manufacturing process is self-supported while obeying the constraints of additive manufacturing, which includes considerations for cantilever angles, minimum thicknesses, and porosity, among others.

When asked about the material used in the component being discussed, Cukurel confirms that it’s a metal part printed with an EOS M 290. “We’re also using Lithoz for all our ceramic manufacturing,” he adds. Lithoz is a ceramic manufacturing company that Cukurel speaks highly of, stating that they’ve been “very supportive and enthusiastic about this unique application of the technology.”

Ceramic components, while being tougher to manufacture, offer advantages like smaller defect sizes and smoother finishes, leading to improved aerodynamic performance. This performance translates into significant savings in fuel consumption, hence the potential appeal of using ceramics for specific components.

Cukurel concludes by emphasizing the importance of hitting the conceptual design target, noting that a deviation of as little as 5% can impact fuel savings or thrust by almost the same margin. In the world of jet engine design, even the smallest percentage points can lead to major changes. The compressor performance of the ceramic parts was aerodynamically somewhere between three to four percentage points greater, “I know it sounds small, but you know people sacrifice their firstborn child for the 1% difference in performance,” said Cukurel.

Monolithic additively manufactured silicon nitride rotor of ultra micro gas turbine, designed to operate at 500,000 RPM. Photo via Technion Turbomachinery and Heat Transfer laboratory.

Is the future of energy 3D printed?

The future of energy could be reinvented by Israeli researchers and their work on preassembled engines using 3D printing technology. Their project, focusing on the application of micro gas turbines in distributed energy generation, is shaking up conventional understandings of energy efficiency and creating new possibilities for sustainability.

Cukurel offered two distinct applications for the technology. Firstly, he highlighted military usage, specifically unmanned aerial systems. In this sphere, supply chain disruption is a significant concern, potentially leaving crucial operations without essential components like bearings for six to nine months. The preassembled engine technology circumvents this problem by eliminating the need for such a supply chain altogether.

The second, and arguably more compelling application, is in distributed energy generation. The conventional centralized power plants have an energy efficiency cap at around 65%, meaning 35% of energy generated simply goes to waste. Cukurel proposed a solution using combined heat and power with distributed micro gas turbines in localities. 

5cm scale ultra micro gas turbine intended to produce 300w. Photo via Technion Turbomachinery and Heat Transfer laboratory.

He further explained, “Renewables are interrupted sources. You don’t want to rely on whether there will be wind today, right? Or there’ll be sun today. You want to run your factory no matter what. So then how do you have an agile, robust grid even when your renewables may or may not be producing?”

Agile in this context doesn’t mean sprinting around a track. It refers to the ability to quickly adapt and respond to changes in energy demand. In this case, those changes are the unpredictable outputs of renewable energy sources. Traditional centralized power plants aren’t exactly Usain Bolt in this race—they’re not built for quick changes. Small micro gas turbines, however, are.

Although the transformative potential of this technology is evident, a major obstacle lies in the return on investment. As it stands, the cost of these micro gas turbines is too high to yield a satisfactory ROI in a reasonable timeframe. Yet, the technology discussed here offers a potential breakthrough by drastically reducing the associated costs.

Furthermore, these researchers have plans to commercialize their work. A spinoff from Technion is in the pipeline, and partnerships with industry players and strategic investors are on the cards. Cukurel expressed his excitement at the potential societal impact of their work, particularly in enabling micro gas turbines to burn ammonia, which could act as a renewable, green, carbon-free fuel. He passionately explained, “Forget about all this work that I’ve mentioned to you. Okay, just to be able to have a micro gas turbine that’s burning ammonia, in terms of sustainability is a breakthrough.”

Ammonia has been used as fuel before, notably during World War II in Belgium, but the combustor designs for gas turbines have changed significantly since then. The technology Cukurel and his team have developed — a porous media combustor — is particularly suited for burning ammonia. While they didn’t invent the porous media combustor, they are the first to apply it to this landscape.

With my curiosity sufficiently piqued, I delved further into the mechanics of ammonia combustion.

Silicon carbide Porous Media Combustor providing wide stability for fuel/air ratios. Photo via Technion Turbomachinery and Heat Transfer laboratory.

Sustainable energy using ammonia engines

The wartime ammonia-powered engines presented a number of challenges, primarily their sensitivity to fuel and a general lack of flexibility. That’s why Cukurel and his team found gas turbines a more appropriate technology for their project.

“In gas turbines,” Cukurel explained, “most of the combustor designs use a completely different technology. They optimize for vaporization, then have these dilution tubes to meter the fuel, and introduce the hot gases into the turbine.” What sets the Technion team apart is their unique application of a specific technology – the porous media combustor. This is the first time it’s been applied to ammonia-burning micro gas turbines, making their work ground-breaking.

Let’s demystify the term ‘porous media combustor.’ It’s a special type of combustor where the fuel-air mixture is burned within a porous medium, creating highly efficient, low-emission combustion. This isn’t something new; it has been around for at least 50 years, with traditional manufacturing methods involving dipping foams into a ceramic slurry and then sintering them. However, as Cukurel points out, this gives you “no control over the porosity and how it gets distributed in the flow direction.”

The breakthrough lies in the application of additive manufacturing. I was fortunate enough to observe one of these combustors, and what caught my eye was its doughnut shape with an organic, bubble-like lattice structure inside. The porosity of this structure changes in the flow direction, which in this case is radially inward. This is where the utility of 3D printing comes in, as it allows for control of the porosity gradient that is impossible to achieve with traditional manufacturing techniques.

Porous Media Combustor operating with premixed fuel/air mixtures. Photo via Technion Turbomachinery and Heat Transfer laboratory.

Cukurel is also a co-author of a recent paper providing a comprehensive analysis of the design, production, assembly, and high-speed testing of monolithic rotors using Lithography-based ceramic manufacturing (LCM) and Selective Laser Melting (SLM) techniques. Entitled, Ceramic and metal additive manufacturing of monolithic rotors from sialon and Inconel and comparison of aerodynamic performance for 300W scale microturbines, this is the first study to directly compare micro-turbomachinery components made with these methods using aerodynamic and manufacturing quality assurance diagnostics. The paper examines the aerodynamic implications of support-free compressor and turbine design, formulates detailed manufacturing considerations and process parameters for both LCM and SLM, and conducts quality analysis of the parts through surface and CT scans, as well as SEM micrography. The results reveal that LCM rotors exhibit higher geometric detail, better surface finish, fewer manufacturing-related surface artifacts, and lower porosity compared to SLM rotors.

These groundbreaking concepts and future applications could change the world as we know it. As we face the existential threat of climate change, innovations like these are not just intriguing; they may be crucial for our survival. 

The quest for clean and sustainable energy sources has been a pressing concern for researchers and environmentalists alike. With the world’s population growing at an unprecedented rate, the demand for energy is higher than ever before. Traditional fossil fuels, such as coal, oil, and natural gas, are not only finite resources but also major contributors to greenhouse gas emissions and climate change. As a result, the need for alternative energy sources that are both renewable and environmentally friendly has become increasingly urgent.

One such promising alternative is hydrogen, a clean and abundant element that can be used as a fuel for various applications, including transportation and electricity generation. However, the production of hydrogen has long been a challenge, as it typically requires the use of fossil fuels or large amounts of electricity. This is where the solar-to-hydrogen breakthrough comes in, potentially revolutionizing the clean energy landscape.

The solar-to-hydrogen process involves using sunlight to split water molecules into hydrogen and oxygen, a process known as photoelectrochemical (PEC) water splitting. This method has been the subject of extensive research for decades, but it has been hindered by the lack of efficient and cost-effective materials that can effectively absorb sunlight and catalyze the water-splitting reaction.

Recently, however, researchers have made significant strides in overcoming these obstacles, paving the way for a new era of clean energy. One such breakthrough comes from a team of scientists at the Helmholtz-Zentrum Berlin (HZB) and the University of Cambridge, who have developed a new class of photoelectrodes made from a novel metal oxide material. This material, known as a perovskite, has shown remarkable efficiency in converting sunlight into hydrogen, with minimal energy loss.

The key to the success of this new material lies in its unique electronic structure, which allows it to absorb a wide range of sunlight wavelengths and efficiently transfer the energy to the water-splitting reaction. Additionally, the perovskite material is highly stable and resistant to corrosion, making it an ideal candidate for long-term use in PEC water-splitting devices.

Another notable development in the solar-to-hydrogen field comes from researchers at the Technion-Israel Institute of Technology, who have developed a new type of solar cell that can directly produce hydrogen from water. This innovative device, known as a direct solar water-splitting cell, combines the functions of a solar cell and an electrolyzer into a single unit, eliminating the need for external electrical connections and significantly reducing energy losses.

The direct solar water-splitting cell is made from a combination of semiconductor materials, which are carefully arranged in a multi-layered structure to optimize the absorption of sunlight and the generation of hydrogen. This design has demonstrated impressive efficiency levels, rivaling those of traditional solar cells and electrolyzers.

These groundbreaking advancements in solar-to-hydrogen technology hold immense potential for the future of clean energy. By harnessing the power of the sun to produce hydrogen, we can significantly reduce our reliance on fossil fuels and curb greenhouse gas emissions. Furthermore, hydrogen can be easily stored and transported, making it a versatile energy carrier that can be used in various applications, from powering vehicles to generating electricity for homes and industries.

As research in the solar-to-hydrogen field continues to progress, we can expect to see further improvements in efficiency and cost-effectiveness, making this clean energy solution increasingly viable on a large scale. With the potential to revolutionize the way we produce and consume energy, the solar-to-hydrogen breakthrough marks the dawn of a new era in clean energy, one that promises a brighter and more sustainable future for our planet.

atalysts spur the world’s economy, but they still hold many mysteries. “One-third of global gross domestic product relies on catalysts, and yet do we really understand how they operate under working conditions? Absolutely not,” says Charlotte Vogt, an assistant professor of chemistry at the Technion—Israel Institute of Technology.

Vogt is determined to fill that knowledge gap. Her research reveals the inner workings of catalysts that could tackle climate change by decarbonizing our energy systems and industrial processes, and she’s driven by the urgency of the challenge. “We have to come up with new catalytic systems at record speed, and how are we going to do that if we don’t really understand them?” she says.

Most of the common reactions in the chemical industry involve passing gases or liquids over solid catalysts at high temperatures or pressures. To improve the performance of these heterogeneous catalysts, chemists try to understand the mechanism of the reaction going on at the catalyst’s surface. Traditionally, this approach has involved using spectroscopic and other techniques to study simplified versions of the reaction systems—perhaps focusing on a single facet of a catalyst crystal at extremely low pressure so that just a few reactant molecules adhere to its surface.

Despite the insights they have provided, these model systems are completely different from the conditions of industrial reactions and can give a misleading or incomplete view of how the catalyst works. So Vogt instead studies catalysts in their real-world operating environments, known as operando in chemical parlance, and in real time, which poses enormous experimental challenges.

A catalyst particle can have many different reaction sites that change during the reaction. And the catalyst is surrounded by a blizzard of reactant and product molecules, most of which are not undergoing the reaction in question at any given moment. “You’re sometimes looking for spectroscopic signals that are like a needle in a haystack,” Vogt says. “So we’re developing techniques to elucidate those tiny but important signals and distinguish them from everything that is not important.”

“We have to come up with new catalytic systems at record speed, and how are we going to do that if we don’t really understand them? ”

Charlotte Vogt, professor, Technion—Israel Institute of Technology

Her team studies catalysts using X-rays at synchrotron facilities, for example, or infrared spectrometers in Vogt’s lab. Then the researchers use machine learning and pattern recognition techniques to comb through the terabytes of data. They also design specialist reactors that can operate at realistic conditions while allowing spectroscopists to peer inside the heart of the reaction.

Vogt is applying these techniques to the reactions of small molecules, including carbon dioxide and ammonia, that have a huge global impact. In addition to studying conventional heterogeneous catalysts, she’s also interested in developing operando techniques to study electrocatalytic reactions that produce NH3 or convert CO2 into fuels and other useful products. Deployed at an industrial scale, these reactions could take advantage of the growing availability of renewable electricity.

In 2021, Vogt established her research group at the Technion, where she has joined the new Stewart and Lynda Resnick Sustainability Center for Catalysis. “She mixes a deep knowledge of science with a vision of how to apply it to real-world problems,” says Ilan Marek, the center’s director. “She was a perfect fit.”

Vogt has always understood the power of chemistry to change the world. Her father, Eelco Vogt, was the global R&D director for catalysts at chemical company Albemarle, “so I had a really good role model at home,” Charlotte Vogt says. After undergraduate and master’s degrees at Utrecht University, she stayed on for a PhD with Bert M. Weckhuysen, a leading proponent of operando spectroscopy. “She is very driven, she knows how to organize things, and she has a real passion for science,” Weckhuysen says.

Her PhD research included dissecting the Sabatier reaction, which typically uses a nickel catalyst to convert CO2 and hydrogen into methane and water. Improving the efficiency and selectivity of that process could offer a way to use industrial CO2 emissions as a raw material for storing renewable energy in chemical fuels. Vogt’s spectroscopy work revealed how the nickel catalyst particles’ size and structure affected the reaction and how metal oxide supports beneath the nickel particles influenced the products formed.

Weckhuysen and Eelco Vogt are old friends, so Charlotte Vogt was determined to forestall any suggestions of favoritism and worked hard to establish herself as an independent scientist. “In fact, during my PhD I didn’t talk to my dad about my science. Not one word,” she says.

Now that Vogt has her own lab, though, she’s happy to discuss the trials and tribulations of being an assistant professor with her father and has even collaborated on a paper with him. “He’s an amazing support system to have,” she says.

About one person in 50 – equally in men and women –will suffer from alopecia areata at some point in their life.

Haifa researchers have found a non-genetic cause for alopecia areata baldness, which triggered the surprising incident at the the 94th Academy Awards in which actor Will Smith slapped comedian Chris Rock after he joked about Smiths wife’s shaved head because of the autoimmune disease.

About one person in 50 – equally in men and women – will suffer from alopecia areata at some point in their life. The condition can develop at any age, although most people are diagnosed for thefirst time before the age of 30. In recent years, more and more research evidence has accumulated on the source of the autoimmune disease in an inflammatory process caused by cells that develop in patients with genetic predisposition that attack the hair follicle at its growth stage and results in the collapse of the immune system that characterizes it.

But a new study at the dermatology department at the Rambam Healthcare Campus and the skin research lab at the Technion-Israel Institute of Technology’s Rappaport Faculty of Medicine has found evidence of another source – involvement of innate lymphoid cells-type 1 (ILC1) – that can cause its outbreak among people who do not belong to the high-risk group.

It has just published in the online journal e-Life under the title “Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata.”

Hair loss caused by alopecia areata. (credit: Wikimedia Commons)

A common skin disease that breaks out when the immune system attacks and harms the hair follicles, after accidentally recognizing the body’s tissue as a foreign tissue, it causes baldness on largeareas of the scalp, and in more severe cases, there is body-hair loss on larger and other places, as well as itching and a feeling of burning in the affected areas. There is no cure, but last June, the US Food and Drug Administration (FDA) approved a first drug to treat severe cases of the condition – baricitinib (Olumiant).

Olumiant is a Janus kinase (JAK) inhibitor that blocks the activity of one or more of a specific family of enzymes, interfering with the pathway that leads to inflammation. It restored hair growth in 25% to 35% of patients but also causes side effects.

Rambam and Technion researchers found evidence of another source

In recent years, more and more research evidence has accumulated on the source of the autoimmune disease in an inflammatory process caused by cells that develop in patients with genetic predisposition, which attack the hair follicle at its growth stage and results in the collapse of the training that characterizes it. However, a new study common to Rambam and the Technion has found evidence of another source, which can cause the outbreak of the disease among people who do not belong to the risk group.

The conventional hypothesis is that CD8 cells are responsible for the disease. But in a study conducted by a team led by Prof. Amos Gilhar and in collaboration with researcher Dr. Aviad Keren and Professor Dr. Rimma Laufer- Britva , another group of cells was found that so much was unknown to its involvement in the disease. LC-1 constantly secretes a variety of proteins that usually attack external factors that invade the tissues they are in,” explained Gilhar.

Thus, the classic lymphocyte cells, those that used to be regarded as solely responsible for the onset of the disease, are not alone.

As part of the research experiments, the team transferred these cells to a healthy scalp and then transplanted on unique mice. Exposing hair follicles from a completely healthy source to ILC-1 cells caused the secretion of a high level of interferon gamma, a material known as a major part in causing hair loss leading to alopecia areata – so there is not a single route, in which genetics and classical immune cells play an exclusive role, but several pathways, said Gilhar.

The journal editor commented that the study provides “compelling evidence that injection of ILC1-like cells induces alopecia in a mouse model grafted with human hair follicle-containing skin and will be of interest to immunologists, skin biologists, and scientists interested in autoimmune disorders” and eventually leading to better treatment of alopecia areata.

In October 2023, Professor Emeritus Avraham Shtub of the Technion-Israel Institute of Technology, will offer his course “New Product Development” as a Global Network online course for the ninth time. While the content is similar, the course has evolved over the years. In 2014, “New Product Development” was among the first small network online courses (SNOCs) offered through the Global Network for Advanced Management. In 2019, a version of the course was added to Coursera, and Shtub shifted to a “flipped classroom model” for the SNOC, assigning lectures on Coursera for homework, and then using the virtual class time for discussion. Then in 2021 and 2022, the course added an additional experiential component. Shtub assigned students to projects with early-stage startup founders with whom they collaborated, giving them hands-on experience in product development.

We asked Professor Shtub about his motivation for offering the course as a SNOC and what students can expect from the course.

What made you decide to teach this particular course as a SNOC?
As the head of the project management research center at the Technion I was asked to develop a course focusing on the management of New Product Development (NPD) projects, as part of the new Startup MBA program at the Technion. Today I teach this course at several universities in Europe and the USA using zoom.
During a meeting of GNAM universities in China I presented this course as part of the Technion presentation. Several universities – members of GNAM – were interested in the course. I agreed to teach it as a SNOC as it was a great opportunity to collaborate with other GNAM universities and to teach students how to manage international NPD projects.  
 
Who should take this course?
The course is designed for students who want to learn how to manage NPD projects and would like to apply this knowledge in the framework of an international team of GNAM students. Specifically, students who consider the idea of founding a new startup can use this course to simulate the development process, including the preparation of a project plan and its execution in a simulated environment.
 
What does the global virtual environment of a SNOC provide for students in terms of cross-cultural learning, and how can this also help you?
Many NPD projects are performed by international teams. The concept of a Glocal product (Global product with a local adaptation) is based on the understanding of customers’ needs and expectations in different countries. Working with a team of GNAM students from different countries facilitates cross-cultural learning and helps in the development of ideas for Glocal products and services.
 
What do you hope students take away from your class that they can apply to their careers, regardless of the path they choose?
I hope that the tools and techniques discussed and used in this course will help the students in focusing on the most important issues in the New Product Development process. The opportunity to work with a team of GNAM students from other countries will expose the participants to other cultures and a variety of decision-making processes.
 
Is there anything I haven’t asked you about that is worth considering or mentioning? 
A paper recently published:


Solan, D., & Shtub, A. (2023). Development and implementation of a new product development course combining experiential learning, simulation, and a flipped classroom in remote learning. The International Journal of Management Education, 21(2).‏
Can help students understand the course content, structure and learning outcomes.

While the micro turbojet engine may be small – weighing only eight pounds – it remains a startling chunk of Inconel. The engine is a single, complete assembly, including all rotating and stationary components.

The turbojet was designed in Creo CAD software, using Inconel as the material and an EOS 3D metal printer as the production machine. “The engine is about the size of a basketball. It would probably be used for drones,” Steve Dertien, chief technology officer at PTC, said during a presentation.

The jet engine project was the brainchild of Ronen Ben Horin, a VP of technology at PTC and a senior research fellow at Technion – Israel Institute of Technology – and Beni Cukurel, an associate professor of aerospace at Technion. The two took their scientific research in jet propulsion and their engineering expertise and designed the engine for additive manufacturing.

When designing the engine, the researchers focused on:

  • A lightweight design: That required sophisticated lattice modeling and generative design for material and weight reduction while maintaining the appropriate strength and performance that could match designs with more material and heavier weight.
  • Self-supporting geometries for 3D Printing: That means the software had to optimize designs for printability. Creo needed to create self-supported formula-driven lattices that can be paired with printability checks and modifiers to adjust the design for printing efficiency.
  • 3D printing equipment interoperability: Creo software is compatible with most 3D printing equipment for printing and post-processing. Creo provides a variety of formats, including 3MF, for sending 3D models to the market’s various printer technologies, while also allowing users to create associative models for machining operations. This micro-jet engine was printed with an EOS printer.

In a statement, Cukurel acknowledged that designing the engine with Horin was the culmination of many years of research that included staying on top of advancements in the supporting technology of 3D printing and design software. He noted that the design offers a viable way of producing micro turbojet engines.

While this machine is not the first 3D-printed jet engine —  Monash University in Australia claimed that title in 2015, and GE claimed it in 2020 – Cukurel and Horin can probably claim bragging rights for doing it as one piece.

Israel’s ophthalmologists are getting a boost from innovators developing solutions for eye diseases and eye health. 

“I think we can see how this industry has matured in Israel, both on the management side, and in the sense of understanding what to develop, and how to develop it,” says Dr. Barak Azmon, a pioneering entrepreneur in the country’s ophthalmology industry. 

Azmon is chair of the ophthalmology session at next week’s annual Biomed Conference in Tel Aviv, which showcases the latest developments in healthcare, and will be exhibiting some of these new ocular technologies.

Israel’s ophthalmologists are getting a boost from innovators developing solutions for eye diseases and eye health. (Courtesy Maksim Goncharenok/ Pexels)

“In Israel, there are around 70 startups in the ophthalmologic space. It’s probably more than in the Silicon Valley or any other region alone,” says Azmon.

“As we will show in this conference, we have a unique year where nine companies in the ophthalmology space have already launched new products or are expected to do so by the end of the year.”

NoCamels takes a look at some of the most innovative solutions in the field of eye health in Israel: 

Orasis: Eyedrops For Better Vision

Many people over the age of 45 who have always had 20/20 vision find themselves suddenly needing reading glasses as their eyes age – a chronic inconvenience whose long-term solution is an invasive medical procedure. 

But now new eyedrops developed by Orasis will be able to correct farsightedness (presbyopia) – albeit for a few hours. 

Orasis’ eye drops will enable people with farsightedness to see clearly without reading glasses for several hours at a time. (Courtesy Yaroslav Shuraev / Pexels)

“We aspire to make near vision clear again for people with presbyopia by empowering them with an unparalleled solution, an eye drop that will provide them with comfort and control of their near vision,” said Elad Kedar, CEO of Orasis. 

The eyedrop improves patients’ vision by constricting the pupil, resulting in a “pinhole effect” and increasing their depth of field and ability to focus on nearby objects. 

Presbyopia is a result of the natural aging process, and there are almost two billion people living with it globally. They experience blurred vision when performing daily tasks like reading a book, a restaurant menu or messages on a smartphone.

Existing treatment options for farsightedness include invasive treatments like LASIK eye surgery, pictured. (Courtesy Senior Airman Brian Ferguson/ Wikimedia Commons)

It cannot be prevented or reversed, and it continues to progress gradually. All existing treatment options are either inconvenient, like reading glasses and contact lenses, or invasive, like refractive surgery that changes the shape of your cornea and lens implants, which replace the lens in each eye with a synthetic one.

Orasis’ eye drops will be sold in the US by the end of the year. 

CorNeat Vision: Synthetic Sight 

Over two million people lose their vision every year due to a group of eye diseases known as corneal blindness.

The only effective treatment available is a cornea transplant – the clear, front part of the eye that absorbs light, which is later translated by the retina into the images that we see.

Problem is, there’s a shortage of cornea donors worldwide. In China, for example, there are five million patients with corneal blindness, but only 5,000 possible transplants a year. 

An animation showing CorNeat Vision’s synthetic lenses. (Courtesy)

Furthermore, artificial corneas are not effective for more than a few months as the immune system sees them as something foreign that needs to be dissolved or expelled. 

But startup CorNeat Vision says it has developed a synthetic cornea that can fully rehabilitate corneal blind patients and integrate into their eye tissue. 

The “skirt”, or rim of the lens, is made of a patented plastic that stimulates the cells to accept it and incorporate it into the eye tissue. 

“There’s no other material that seamlessly embeds itself with live human tissue for life,” says Almog Aley-Raz, CEO.

“When you implant anything, it triggers a foreign body response, and our immune system will work to degrade and eventually absorb it or, in case it is non-degradable, it will encapsulate it with a granuloma (a cluster of white blood cells and other tissue), isolating it from the body.”

The CorNeat KPro. Courtesy

It uses the electrospinning technique – an existing method of creating tiny polymers and metals – to fabricate a rim for an artificial lens, which until now has been seen as an engineering challenge. 

The CorNeat KPro is currently undergoing clinical trials, and is expected to be approved for marketing late in 2024.

NovaSight: New Way of Testing

We are all familiar with the ubiquitous eye chart to test our vision, and while it may be effective for adults and adolescents, that isn’t the case for children. 

They often don’t cooperate or are simply incapable of taking the test because they’re too young. 

NovaSight has developed an eye exam that tracks the position and gaze of the eye to assess their vision.

All the patient needs to do is watch a video on a tablet that is mounted with an inconspicuous eye tracker called the EyeSwift.

Children are often incapable of taking a traditional eye exam because they’re too young. (Courtesy National Library of Medicine – History of Medicine / Wikimedia Commons)

The video shows dots that are constantly moving across the screen, and its resolution gradually reduces over time, becoming more and more foggy. 

The company’s algorithms then determine the patient’s level of eyesight once their eyes can no longer follow the target. Its creators say it is simple, accurate and more accessible for both children and adults than traditional eye exams. 

“We see when the kid or the adult is not able to track this moving target anymore, just by looking at their eyes,” says Ran Yam, CEO of NovaSight. “We know exactly what their threshold vision is without asking them anything, and without them saying anything.” 

Until now, eye tracking has mostly been used for gaming or in expensive medical devices such as those used for people living with ALS (an incurable disease of the nervous system) and not in eye care. 

NovaSight will be releasing its treatment for lazy eye, which is also powered by the EyeSwift, later this year. (Courtesy)

“The technology became more affordable over time, so we took that opportunity in order to integrate it into medical devices for vision care,” Yam explains. 

The EyeSwift also offers a variety of vision tests, including for color blindness, reading performance, stereoacuity (a person’s ability to detect differences in distance) and more. The same technology also powers the company’s treatment for lazy eye. 

NovaSight is this month launching a commercial pilot with Opticana, one of Israel’s leading optical chains. 

Notal Vision: Speedy Home Diagnosis

Worsening eyesight is an unfortunate part of aging. For 200 million people worldwide, it comes in the form of age-related macular degeneration (AMD), a treatable but recurring disease where the central part of a person’s vision becomes blurred or distorted over a period of days or weeks. 

If the condition worsens, the person may struggle to see anything in the center of their field of vision, and a lack of regular oversight by a physician could mean that their eyesight has irreparably deteriorated. 

A simulation that shows what a grocery store aisle looks like to someone with age-related macular degeneration. (Courtesy National Eye Institute, NIH / Wikimedia Commons)

Notal Vision provides these patients with a daily home monitoring device using artificial intelligence that within three minutes identifies the onset or reactivation of AMD, thereby offering better, faster and more personalized care. 

“The patient puts their head into a viewer where they watch stimuli, and use a computer mouse to click on a location where they spot distortions,” explains Dr. Kester Nahen, CEO of Notal Vision.

“After our AI algorithm analyzes the data, their physician is notified through our monitoring center that provides the service, and a decision can be made to bring the patient into the office for further imaging.” 

A patient using the HomeOCT device, which will be available in the US later this year. (Courtesy)

Notal Vision says a study showed that 81 percent of patients whose AMD progressed and were using their ForeseeHome device maintained 20/40 (or better) vision, compared to only 32 percent of patients whose diagnosis was at a routine eye exam or a medical consultation triggered by symptoms.

The company’s new device, the Home OCT system, will help physicians monitor the symptoms and progression of patients with wet AMD, a more serious form of the disease, and offer personalized treatment. It is expected to be in use in the United States by the end of the year.