These Israeli companies use mobile phones to gather and/or transmit health data and keep tabs on chronic conditions.

Social entrepreneur Ariel Beery and optics expert David Levitz had the inspiration to use the built-in camera of a smartphone to screen for cervical cancer — the fourth most common cancer affecting women globally and the second most common cancer for women in low-resource settings.

“More than five billion people around the world have access to mobile phones, but not to a physician,” Beery told ISRAEL21c in 2014, when the prototype was being piloted in five countries.

“We can do what a $100,000 device can do on a mobile phone, with 10 times better magnification than using just the naked eye, raising diagnostic accuracy significantly.”

Today, the EVA point-of-care device from MobileODT is used by primary care providers in 30-plus countries to conduct specialist-level visual screenings for thousands of women.

Ariel Beery, general partner of CoVelocity Health. Photo by Erin Kopelow

“MobileODT was the first company to build an FDA Class 2 medical device — a regulated medical device that replaces an existing medical system — around a mobile phone,” says former MobileODT CEO Beery, now general partner at CoVelocity Health, a strategic commercialization partner for medical technologies.

Since then, many other companies have harnessed the mobile phone – either to help healthcare professionals gather data (as with MobileODT) or to help patients transmit data from home to the practitioner and facilitate communication during a remote exam.

“There are a number of reasons why mobile phones make sense to be the core platform for a medical device,” says Beery.

“The first one is that every single person on the planet knows how to use one. And that is so important, because training and onboarding for a medical device is very difficult. When you have something based on a mobile phone platform, it’s relatively easy for the practitioner to watch a few tutorials and very quickly start using the device. That’s not the case with anything else, and it’s super important because then you can expand into rural areas and low-resource settings efficiently.”

There are other advantages of using smartphones for healthcare.

“From a regulatory perspective, most mobile phones in the market have received both electrical testing and broadcast certificates. Wi-Fi is intermittent around the world, but when you have a SIM card and a device that will be connected or integrated with medical information systems, a mobile phone shortcuts a whole host of regulation and registration — things that are really hard and expensive to do,” Beery adds. “For any [medical] device that requires communication, mobile phones already have all that already baked in.”

Below are descriptions of 13 companies using the smartphone as a basis or adjunct for smart healthcare.

MobileODT

Photo of the EVA system courtesy of MobileODT

Beery and Levitz originally envisioned EVA as a colposcope addon for the healthcare practitioner’s own phone. The current version instead has a dedicated Samsung J530 built in for all-in-one visualization, documentation and teleconsultation.

“We learned that there’s a big difference between things that assist a health worker in decision-making or communication functions, where using their own mobile phone makes sense; and information-gathering or diagnostic functions, in which case a dedicated mobile phone makes sense,” Beery explains.

“Diagnostic functions require your device to touch the patient. That brings up issues of security and sterilization. Also, a dedicated phone doesn’t have the same wear and tear and memory issues that you have with someone’s personal phone and doesn’t conflict with their images and WhatsApp and what have you.”

The EVA product line now includes separate devices for cervical cancer screening, cervical examination and sexual assault forensics. It’s also used to train clinicians in colposcopy; telecolposcopy or remote colposcopy.

Binah.ai 

Remotely or onsite, Binah.ai’s video-based solution provides medical-grade vital signs measurements — heart rate, heart rate variability, mental stress level, oxygen saturation, respiration rate and more — within 2 minutes via a video of the patient’s upper cheek taken with a smartphone, tablet or laptop.

The signal processing and AI technology compensates for motion and imperfect lighting, and supports any age, gender and skin color. It can even detect subtle changes that might otherwise go unnoticed. Binah.ai works with healthcare, insurance and wellness industries in several countries.

Binah.ai is headquartered in Ramat Gan with offices in Maryland and Tokyo.

Healthy.io

This Tel Aviv-based startup, founded in 2013, leverages the image-processing capability of any smartphone camera for four at-home Minuteful medical tests – kidney function, wound management, urinary tract infection and urinalysis — whose results are transmitted to the clinician instantly.

Healthy.io’s partners in the US and UK include, among others, the National Kidney Foundation, the National Health Service, Modality and the Boots chain. The company recently acquired its American competitor, Inui Health, for $9 million.

K Health

K Health, billed as “healthcare without the system,” provides 24/7 phone access to board-certified doctors in 48 US states for $29 per month (no insurance necessary), where it has some 6 million users. The entire intake process is done on the smartphone, and users text K Health when they are free for a consult.

K Health provides 24/7 access to physicians as well as a free symptom checker. Photo courtesy of K Health

Members can download a free AI-powered symptom-checker app and obtain on-the-go prescriptions and refills. Primary care, urgent care, mental health and pediatric care (as well as Covid-related services) are all included. K Health is based in New York with development offices in Tel Aviv.

Sweetch

Sweetch provides a personalized digital coach for preventing and managing chronic diseases. Image: screenshot

Sweetch is a mobile based digital coach providing personalized recommendations for preventing and managing chronic conditions, generated from analysis of millions of datapoints on the individual’s smartphone and other connected devices.

In addition to the Sweetch app, the technology is available as a white-label app or as an SDK to be integrated within an existing app. Headquartered in Tel Aviv, Sweetch is used in countries across the world.

Montfort 

Montfort bridges technology and neurology, turning any standard smartphone into a personalized neurological medical testing device.

Using smartphone sensors and AI, Montfort’s EncephaLog app provides FDA-cleared digital neurological tests for early diagnosis of conditions such as Parkinson’s disease, Huntington’s disease, anxiety, depression, post-Covid-19 neurological symptoms and more.

In the app, patients see the specific tests prescribed with reminders about when to take the tests and instructions in the patient’s preferred language. Montfort is used in more than 10 countries.

The tests measure parameters in three dimensions — motor (such as balance, gait, tremor), cognitive (memory, response time, pattern recognition) and mood indicators. It merges those measures with a fourth dimension of physiological records (genetics, brain scans, data from wearable devices) for a holistic picture.

Nonagon 

Nonagon, backed by Phillips and Teva, has FDA and CE approval for its smartphone-based telemedicine device.

Four embedded sensors interface with the user’s smartphone to provide readings of nine common tests required for primary medical care: a stethoscope check (lung, heart and bowel sounds), otoscopy of the ear, oximeter (pulse rate and saturation), thermometer (body temperature), and a throat and skin test that uses the smartphone’s camera.

The device works with patients as young as two years old. The clinical data is sent in real time to the physician, enabling near immediate diagnosis, referral or prescription. Formerly known as MyHomeDoc, Nonagon is based in Caesarea with offices in New York.

TytoCare

This company’s award-winning TytoHome remote exam device ties in with the user’s and physician’s iOS or Android smartphone (or other device) via an app that allows the practitioner to control and guide the entire exam in real time.

For example, the clinician can take control of the stethoscope adapter to listen to lung and heart sounds or use the otoscope adapter to check ears for infection. After confirming a diagnosis, the clinician can send further instructions or a prescription.

OneStep

Photo courtesy of OneStep

OneStep of Tel Aviv developed an app-based physical therapy platform providing comprehensive gait analysis using only smartphone sensors.

The user needs nothing more than a smartphone nearby while doing the prescribed exercises. The app gives a detailed assessment of walking and overall mobility and allows physical therapists to communicate and provide effective treatment to patients 24/7.

Lumen

Lumen’s handheld device allows users to analyze and monitor their metabolism with their smartphone. It reveals the body’s current source of energy — fats or carbs — on a scale of 1 to 5, based on the respiratory exchange ratio.

Image courtesy of Lumen

The score helps users adjust their daily diet and physical activities accordingly: Low-carb days decrease the insulin spike, improving insulin sensitivity and enhancing mitochondrial function, while high-carb days ensure the body’s ability to use carbs for energy and keep hormones in balance.

MindReset

This app built on eye-tracking technology from Jerusalem-based Umoove helps thousands of users “reset” their response to depression, trauma, anxiety, stress and other emotional triggers.

Image courtesy of MindReset

An audio guide takes the user through each daily two-minute session of a 10-day program tailored to specific conditions. The eye tracker on the phone’s camera detects patterns in eye movement that indicate a stress trigger. Users are directed to do certain tasks with their eyes that interrupt the pattern and thus create a therapeutic effect by clearing the triggers.

The unique method behind the app was published last November in the journal Frontiers.

Yitzi Kempinski, founder-CEO of Umoove and CTO of MindReset, says results are so encouraging that the company is researching other ways people can use the app, such as for work burnout or emotional barriers to learning.

Neuralight

Using ocular metric data captured with a standard webcam or smartphone, this Tel Aviv- and Texas-based startup is building an AI-driven platform to accelerate and improve drug development and patient monitoring, as well as introduce precision care for patients with neurological disorders.

A physician records a five-minute video of a patient’s eye movements. Neuralight’s imaging tools clean up the video, then artificial intelligence and machine learning decipher what’s behind the eye movements.

The concept is based on scientific studies over the past 20 years showing correlations between various oculometric measures and the neurological status of patients suffering from a range of neurodegenerative and psychiatric disorders.

Cordio Medical 

Cordio Medical’s HearO technology can sense fluid accumulation related to congestive heart failure through a patient’s speech and send an alert. This noninvasive monitoring solution is based on true speech signal processing augmented with machine learning.

The user speaks into a smartphone app whose algorithms allow near real-time monitoring and early detection of condition deterioration. The system is patient-tailored, constantly learning the patient’s voice. HearO noninvasively.

The company recently raised $18 million and aims to enter the US market in 2024.

Technion-patented technology enables monitoring and early identification of changes in the condition of respiratory patients at home or in hospital.

The Jerusalem Post has partnered with ExitValley, a digital platform that enables anyone to invest in Israel’s start-up ecosystem and share in its success. In this article, we are pleased to introduce NanoVation-GS, an Israeli company that has developed a first-of-its-kind nanosensor-based technology for monitoring and managing chronic respiratory conditions at home or hospitals while reducing hospitalizations. 

The patented technology was discovered at the Technion and is undergoing clinical trials in Israel and the EU. “The technology enables surveillance and early identification of changes in the patient’s condition. In addition to reducing hospitalizations, it is also expected to reduce their duration”, says the company’s CEO and co-founder, Dr. Gregory Shuster, Ph.D.

NanoVation-GS has developed a unique technology for monitoring patients with chronic lung diseases, with an emphasis on obstructive diseases such as COPD – Chronic Obstructive Pulmonary Disease, which enables early detection of worsening of symptoms and helps reduce prolonged and frequent hospitalizations by allowing the patient to receive appropriate early treatment. “The device is designed to measure important respiratory parameters without any discomfort or effort needed by the patient,” says Dr. Shuster.

NanoVation company’s CEO and co-founder, Dr. Gregory Shuster, Ph.D. (Credit: NanoVation)

The development is based on advanced nanosensor technology, which for the first time allows accurate monitoring of changes in respiratory function without any discomfort or effort from the patient, and is particularly sensitive to fluctuations and changes in several critical respiratory parameters. “One of the things we identified was the gap in technologies related to respiratory monitoring. When you look at monitoring in cardiology, for example, there are much broader tools than in respiratory monitoring,” Dr. Shuster explains.

The solution provides the ability to manage chronic respiratory diseases via the cloud, allowing doctors to review data from any location, during hospitalization, and during the follow-up period at home, which also enables the creation of “big data”-bases of all relevant information. “The system is simple to use at home without any need for professional assistance or in a clinical environment. It operates in a non-invasive method, measures normal and effortless breathing, and uses exclusive biomarkers which were identified by the company’s technology,” Dr. Shuster adds.

“The system is simple to use at home without any need for professional assistance or in a clinical environment”.

Dr. Gregory Shuster

NanoVation-GS was founded at the Technion by a leading experienced team, including Dr. Shuster- founder and CEO and senior researcher in nanomaterials and materials engineering, and Prof. Hossam Haick, founder and CSO, a leading researcher and expert in nanotechnology. The company has an exclusive license for its first patent from the Technion and two additional patents owned by the company, which are in the registration phase.

NanoVation-GS has been granted a prestigious development grant by the European Innovation Council (EIC), which only supports start-ups identified as companies with a significant impact and groundbreaking technology. In addition, the company has previously received grants from the Israel Innovation Authority. “Breathing monitoring technologies today can be divided into two groups,” says Dr. Shuster. “One is the technologies that measure normal breathing, which are not invasive or annoying to the patient, but the data collected is limited to the parameter of breathing rate only.

Nanovation Technology (Credit: NanoVation)

“The second group provides a series of respiratory parameters, but it requires the patient to perform certain breathing maneuvers. This is a complicated test for the patient to perform at home. It is bothersome, unpleasant for the patient, and the doctor who receives the data cannot know whether the test was performed properly, because he did not see the patient do it.

“What we do is combine the benefits of these two worlds,” says Dr. Shuster. “On the one hand, our measurement takes a few minutes, during which the patient puts on the sensor and does nothing extra. On the other hand, the data we extract provides a series of respiratory parameters, which are very relevant to changes in the disease condition. All this in one simple test, which can also be done routinely at home. The patient cannot get an incorrect measurement, because all he has to do is breathe naturally.”

The company’s SenseGuard product has been tested so far in successful clinical trials at leading partners in Israel and around the world, including Halle-Saale University Hospital in Germany, Nicosia Lung Center in Cyprus, and in Israel at Ichilov Medical Center, Poriah Hospital, Nazareth Hospital, Rambam and Barzilai Hospitals and the Galilee Medical Center.

NanoVation-GS has completed all procedures needed for obtaining the necessary regulatory approvals for medical devices, including CE certification and international ISO standards. The company will work to update its existing CE certification to the new standard (MDR), while also planning to obtain FDA approval at a later date. NanoVation-GS is ready to start marketing activities in Europe towards entry into the COPD monitoring market, which is its first phase destination market, and later will turn to other territories and examine further commercial and clinical applications.

“Right now, we are focusing on the medical field, looking at chronic respiratory patients, but plans for the future are varied,” Dr. Shuster concludes. “The use of our technology can also be extended to other respiratory and non-respiratory diseases, sleep monitoring and even entering the field of wellness, by measuring and helping to manage the level of stress, assisting with breathing exercises in yoga and more.”

The Technion has received its first human MRI research scanner made by Siemens. The device will operate within the framework of the May-Blum-Dahl Human MRI Research Center in its own 200 square meter facility in the Technion’s Joseph Center for Industrial Research.

The new Center, operated by the Faculty of Biomedical Engineering, will be used by researchers, professors, and students to carry out interdisciplinary research in a range of scientific and medical fields, as part of the Technion’s commitment to scientific excellence and the advancement of human health.

MRI is an important technology for structural and functional imaging of tissues and internal organs including the brain, is non-invasive, and avoids exposure to ionizing radiation. According to the Center’s manager, Dr. Dafna Link-Sourani of the Faculty of Biomedical Engineering, “the MRI study is characterized by being interdisciplinary and involving various engineering faculties (electrical, computers, mechanical, and material) and sciences (physics, chemistry, and biology), and of course medical research.”

According to Prof. Moti Freiman, who is the Center’s academic director, “Many researchers at the Technion have been waiting for the arrival of this essential research tool, and until now have been using other MRI centers for their research. The device will be available to researchers from a wide range of disciplines at the Technion and will also be used by industry researchers who want to deepen their R&D. The uniqueness of the new Center is its location within an engineering faculty, in an institute which is recognized as a global leader in innovative research, with a wide range of engineering fields. This will significantly help to advance innovation at the forefront of research and technology and to develop solutions to important clinical problems. There is no doubt that Siemens is pleased to have brought us the scanner, as we hope that Technion researchers can offer significant improvements in its performance.”

The commencement of the new center’s activity, expected later this year, is the result of ongoing fundraising led by Technion management, together with several Technion researchers: Professor Shulamit Levenberg, former dean of the Faculty of Biomedical Engineering; Dr. Moti Freiman, and Dr. Firas Mawase of the Faculty of Biomedical Engineering; Professor Tzipi Horowitz-Krauss of the Faculty of Science and Technology Education, and Dr. Yoad Kenett of the Faculty of Industrial Engineering and Management. 


This Center will be the first human research MRI center of its kind in the north of the country and is also set-up to explore children’s development. To that end, it includes a mock scanner, making it possible to acclimate children and infants to the imaging process prior to entering the actual device.

Israeli medical device company SoniVie, announced on Sunday that it received Investigational Device Exemption (IDE) approval from the US Food and Drug Administration for its REDUCED1 (Renal Denervation using Ultrasonic Catheter EmitteD energy) pilot study to treat resistant hypertension patients with renal artery denervation using its proprietary therapeutic intra-vascular ultra-sound system, or TIVUS. 

Renal denervation with TIVUS is a minimally invasive procedure that uses high-frequency non-focused ultra-sound energy to burn away nerves in the renal artery. The TIVUS catheter is inserted into the pulmonary artery and selectively damages nerves afflicted by the disease without touching vessel walls or damaging adjacent tissues. This causes a reduction in the nerve activity, which decreases blood pressure and is meant for patients who suffer from resistant hypertension.

Resistant hypertension is defined as blood pressure that remains higher than 140/90 mmHg despite the use of three hierarchical classes of antihypertensive medications at their most appropriate tolerated doses. The condition affects millions of people around the world, increasing the risk of heart attack, stroke, and kidney failure. 

Founded in 2014, SoniVie has developed a first-of-its-kind ultra-sound denervation platform with active programs establishing nuanced therapeutic solutions for pulmonary hypertension denervation, renal artery denervation for resistant hypertension, and lung denervation for obstructive pulmonary disease with chronic bronchitis.

“We are very pleased that the FDA has approved the REDUCED1 study,” said Christian Spaulding, chief marketing officer of SoniVie. “Sites initiation has started, and many clinical teams have responded very favorably about participating in the study.

“There is a significant number of patients that may benefit from our technology and we are genuinely happy for this important step towards the introduction of TIVUS in the US,” he added. “There is a lack of effective therapeutic solutions for patients suffering from resistant hypertension, and physicians are looking forward to a safe, effective and easy to use device treatment.” 

“This is a significant US regulatory milestone for SoniVie, starting the feasibility study using the ultra-sound ablation platform in the US for the renal denervation indication,” said Tomaso Zambelli, CEO of SoniVie. “This is a major step and priority in the company’s history.” 

On this World Blood Donor Day, let’s explore some Israeli tech that is making a difference to one of our most vital components: our blood

Hematological awareness is important as body vitality is exclusively dependent on blood flow. Blood is our natural producer of oxygen and carbon dioxide, and it is also a key mechanism for medical identification. For decades, doctors have prioritized blood analytics and testing as these results present in-depth information regarding diagnostics, treatment methods, and one’s overall physical state. Blood is as much the cure as it is the cause– blood donations are organized worldwide to act as a remedy for the shortage of blood and blood products that can single-handedly save hundreds of lives. Here in Israel, MedTech’s innovative efforts have always been advanced, yet amidst the effects of COVID-19 and how it continues to modify all spheres of society, Israeli MedTech innovations are at an all-time high. With the focus strictly on blood analytics, Israel’s start-up environment has pushed forth incentives and actions that have seemingly revolutionized how blood can be analyzed, detected, and measured. Here are some Israeli startups that play a role in hematology solutions.

PixCell

Blood diagnostic information, in most cases, does not do enough to create an effective impact on immediate health solutions and products. The devices and technologies that have been used thus far do not provide doctors and patients with substantial information when it matters most. Moreover, real-time blood testing is not accessible to everyone which presents numerous implications when patients are in emergencies. These obstacles have disrupted medical efforts for decades as there is a pressing need for in-depth, easily accessible blood diagnostic tools. In an accidental discovery made by a team of researchers at the Technion (Israel Institute of Technology), Viscoelastic Focusing (VEF) has been recognized as the saving grace toward efficient cell analytics. The Israeli startup PixCell has created the HemoScreen that uses advanced technology making use of VEF potential. This product uses a disposable cartridge with specific reagents to elicit a Complete Blood Count test. HemoScreen does not require maintenance or calibration and is versatile to fit the precise needs of its user.

PixCell was founded in 2008 with a keen focus on simplifying and regularizing real-time blood testing worldwide. Their research and entrepreneurial staff have surpassed company expectations with the discovery of Viscoelastic Focusing (VEF), paving a way for pivotal advancements in hematological efforts. Their team consists of Avishay Bransky (CEO, Co-Founder), Prof. Max Herzberg (Co-Founder), Armin Schon (CCO), Hanan Ben-Asher (COO, BD Manager), Mark Erez (CFO), Yaara Ben-Yosef (Director of RA and Clinical Affairs), and Eitan Hod (Director of QA and RA). PixCell has raised over $7 million in grant funding from the European Commission, the International Health-Tech Pilot Program, and the Israel Innovation Authority. In 2021 PixCell was acquired by Soulbrain Holdings.

RedC Biotech

The global supply of red blood cells has seeped far under worldwide medical demands. This shortage has served as a detriment to medical interventions such as trauma, childbirth, operations, chronic illness, cancer, and the list goes on. Red blood cells are the oxygen-carrying capacity of the body which is why 120 million blood units are donated each year, yet there is still a concerning decrease in these donations. Blood drives and donation sites, although they function as a temporary solution, are still not enough to compensate for the urgency in transfusion methods, productions, and resources. The Israeli startup RedC Biotech has initiated a “one blood type fits all” method with RedC Universal Red Blood Cell Transfusions. This product is suitable for almost every patient and provides a uniform potency. It is pathogen-free and donor free and also eliminates undesirable blood components as well as additional hospital testing.

Credit: RedC Biotech

RedC was founded in Haifa in 2015 by Dr. Ari Gargir. Over the past couple of years, the company has received $1.4 million in pre-seed and seed funding from PipelBiz. Their revolutionary technology addresses issues associated with industrial red blood cell production, and cost reductions. From the lab to global production, Red C Biotech is eager to scale the count of red blood cells to save lives worldwide. RedC has a small employee base but is growing in accordance with its production timeline.

Improdia

Current diagnostic tests cannot distinguish between acute and chronic inflammation, as well as monitoring immune functions that are pivotal for personalized treatment methods. With Improdia’s array of Unique BioMarkers, the innovative diagnostic company has developed a simple way to supervise inflammation levels for patients suffering from autoimmune and cancer diseases. ImproDdia’s technology department has made substantial discoveries enabling pharma companies a kickstart in their drug development processes as well as suggesting personalized treatment methods. Improdia’s Diagnostic Kit includes three easy-to-use, unique biomarkers with three distinct functions: the IMPC (for chronic inflammation), IMPI (for immunotherapy), and IMPD (for diabetes complications. IMPC evaluates the immune status and inflammatory pain levels of those with niche medical implications. It aids physicians in selecting the type and timing of specific treatments as well as monitoring the efficacy of such treatments. IMPI is a prognostic test for the efficiency of immunotherapy. It monitors the immune status of cancer patients before immunotherapy or chemotherapy. IMPD is a prognostic test for diabetes complications as it predicts the occurrence of these complications before they are medically obvious.

Improdia’s team consists of Miriam Lerner (Founder, Co-CEO, CTO), Gil Pogozelich (Chairman), Dr. Roy Eldor (Medical Director), Prof. Michal Baniyash (Inventor), and Prof. Ido Wolf (Member of the Scientific Advisory Board). The company has been based in Herzliya since 2012 and continues to aid doctors and patients in the diagnostic and management endeavours of those with chronic immune-mediated diseases.

Sight Diagnostics

Sight’s technology represents breakthrough innovations in diagnostic methodology. Their latest blood analyzer, Sight OLO, performs a Complete Blood Count, the most ordered blood test, in minutes. It’s compact and designed to be used in a variety of settings. OLO creates a digital version of a blood sample by capturing more than 1,000 highly detailed images from just two drops of blood obtained from a finger prick or venous sample. These images are then interpreted by proprietary and fully automated AI algorithms, and the results are available within minutes.

Sight OLO provides 5-part differential complete blood count (CBC) results with 19 parameters and sophisticated flagging capabilities, for on-site testing. It is the first CBC analyzer that is FDA 510(k) cleared for blood taken directly from either a finger prick or a venous sample. Sight OLO has been validated for use in patients 3 months and above, in a variety of CLIA-certified (Clinical Laboratory Improvement Amendments) moderately complex clinical settings such as hospitals, emergency departments, oncology clinics, pediatric practices, and urgent care locations. The sample preparation process can be completed in under one minute, with the full results ready in minutes on a touchscreen interface, printout, email, or via LIS (Latent Semantic Indexing)/middleware. Sight OLO comes factory calibrated for a quick setup with internal Failsafe systems and requires no maintenance. Its minimal training and step-by-step on-screen guidance are designed to be used by operators with any level of experience. OLO also has an Operator Management feature that allows for complete control over who can access the device, including traceability of operator activities.

Sight OLO was founded in 2011 by Yossi Pollack (CEO) and Daniel Levner (Chairman of the Scientific Advisory Board). The company is based in Tel Aviv, London, and Brooklyn with 300 employees. With investments from Koch Disruptive Technologies, OurCrowd, and Longliv, Sight Diagnostics has raised over $120 million to date. Sight has gained worldwide traction with partners eager to use and expand the company’s advanced technology. Among them are Boston Children’s Hospital, Oxford University Hospitals NHS Foundation Trust, and Nicklaus Children’s Hospital in Miami.

EFA

Handheld blood test diagnostic tools are not affordable for the average patient and consumer. Most of these tools require laboratory conditions and specific preparations which fail to account for real-time informed decisions an individual may have to make. Israeli startup EFA developed RevDx™, a revolutionary, European Commission-approved, mobile, and fully automated diagnostic system to be used for different care, including primary care physicians, home care, emergency care, and remote care. RevDx™ is easy-to-use; from a finger prick, you get results within minutes. The application provides a Complete Blood Count test, the most requested hematology test worldwide which provides indications for broad clinical conditions such as infections, disease, fever, immune system, and anemia.

Founded in 2016 by Yoel Ezra (CEO), an engineer and a physicist who served in a technological-operation unit in the IDF for over 23 years, EFA is acting to develop the RevDx solution as a platform that will enable the creation of more diagnostic applications over time. Among the company’s investors are Maccabi Healthcare Services, eHealth Ventures, Merchavia, and Medison. The company currently employs 12 people.

OrSense

Diverse clinical settings have not found easy nor accurate methods to measure blood parameters as current testing devices and tools are not appropriately equipped for such conditions. The key to medical testing is to establish a comfortable environment for any and all patients; with invasive monitoring, though, this element is rather ignored. Israeli startup OrSense works to transform patient health through non-invasive monitoring as they develop and commercialize innovative monitoring technologies focused primarily on donor and patient comfort. Using their revolutionary SpectOLight ™ Occlusion Spectroscopy Technology, OrSense has developed the NBM 200 Device that detects blood hemoglobin (Hb), oxygen saturation levels and pulse rate (PR) values. Patients place their fingers on a ring-sensor probe where the portable desktop attached to the monitor device calculates and displays the figured measurements. To make matters even easier and more efficient, OrSense has developed a software application attached to the device that allows for Tablet or Smartphone use.

Since 1996 OrSense has been working worldwide to overcome key obstacles that do not account for comfortable, accessible, and efficient blood parameter testing. For over 20 years, OrSense has made substantial adjustments toward non-invasive monitoring technologies: the intellectual property portfolio at OrSense consists of 51 granted patents and over 20 additional applications. So far, OrSense has raised over $44.4 million in seed and grant funding from Israel HealthCare Ventures, Star Ventures, Saints Capital, The Lewis Trust Group, and Shimon Eckhouse. Their team consists of Yoav Resiman (Founder and CEO), Aharon Weinstein (VP of Research). Asher Zysman (CFO), and Chip Neff (President). OrSense is located both in Tel Aviv, and Raleigh, North Carolina, USA.

PatenSee

Patients who suffer from renal failure are required to be connected to a hemodialysis machine for a few hours, 2-3 times a week, via a fistula on the patient’s arm. The fistula is the point of connection between the hemodialysis machine and the patient for the treatment. One of the most dreaded complications for hemodialysis patients is fistula loss due to stenosis (blood clogging of the fistula) resulting in an inability to perform routine dialysis – a major risk to patient life. PatenSee is a medical device company (currently in the clinical stage) that has developed a contactless, machine vision-based, surveillance system for the early detection of vascular stenosis and/or a clogged fistula. The technology is designed to provide a very simple way to improve the quality of patient care and to support the nursing staff in the hemodialysis center without adding any burden on the patient or the clinic. The system can also be adapted to home use adding a critical diagnostic feature to home dialysis.

PatenSee was founded in 2019 as a portfolio company of MEDX Xelerator, a MedTech incubator working under a license from the Israel Innovation Authority. Hagay Drori and Oz Seadia founded PatenSee based on an unmet need presented to the MEDX Xelerator by a major strategic player in the dialysis field. Dr. Gal Goshen, PatenSee’s CEO, led it from its early concept through its first-in-human 60-patient clinical study, conducted less than two years after the company’s founding. PatenSee is currently raising a Series A round and is preparing for a multi-center, international, clinical trial of its second-generation imaging system.

The Technion-Israel Institute of Technology and Rambam Health Care Campus together with philanthropists Andi and Larry Wolfe, announced the establishment of the Wolfe Center for Translational Medicine and Engineering

The Technion is one of the few academic institutions in the world in which the Faculty of Medicine operates alongside engineering and scientific faculties. The university conducts extensive teaching and research activities in the fields of medicine as well as biomedical engineering, computing, design, and architecture.

The Rambam Health Care Campus is heavily active in the research and innovation fields through its partnerships with its Division of Research, technology transfer company Rambam MedTech, and the MindUp incubator in cooperation with IBM, Medtronic, and Pitango VC.

The Wolfe Center will elevate the partnership between Rambam and the Technion and will serve as a platform for comprehensive clinical applied research to advance human health technologies that address unmet clinical needs. Interdisciplinary teams will collaborate to solve human health issues, translate research insights into innovative therapeutic tools, and train the next generation of doctors and engineers.  

The Center will be located within the Rambam campus inside the Helmsley Health Discovery Tower and serves as the first joint project of its kind between Rambam, academia, and the biomedical high-tech industry. The Tower will also host centers of excellence, clinical institutes, innovation centers, and several start-up companies, alongside an exhibition and visitor center.

“Research and innovation are critical components in the success of the healthcare system in the 21st century. The tremendous contribution of the Wolfe family will enable us to increase our capabilities. Research is now a necessity for keeping Israeli doctors relevant in a competitive and constantly evolving field. The new center will allow us to convince doctors who are engaged in the difficult, demanding clinical field to continue to work in a large medical center, by providing opportunities for advanced research,” said MikI Halberthal, professor and general director of Rambam Health Care Campus.

“Human health is one of the greatest challenges facing humanity in the 21st century and coping with this challenge requires a combination of capabilities from different worlds of content, from the patient’s bed and the doctors around it, to scientists and engineers from a variety of disciplines,” said Technion President Professor Uri Sivan. “Today, the Technion is creating a revolution aimed at connecting all those disciplines to deal with major challenges in human health, and the Wolfe Center will express the combination of the capabilities of one of Israel’s leading hospitals with a world-renowned scientific-technological university.”

The Israel Institute of Technology (TECHNION) has announced the establishment of the country’s first Artificial Intelligence (AI) research institute for medical technology solutions.

The Technion’s Zimin Institute for AI Solutions in Healthcare, which was jointly launched and operated with the Russian charity Zimin Foundation on Sunday, will focus on multidisciplinary research and technological development in human health and medicine using big data and computational learning, according to a statement from Technion.

Zimin Institute for AI Solutions intends to improve human healthcare on all levels, including hospitals, clinics, drug development, home therapy, and medical wearables. “This new centre is a crucial component of Technion President Uri Sivan’s goal of collaboration and connectivity between research, engineering, and medicine,” said Technion President Uri Sivan.

“It will support applied research that will speed the creation of new and important technologies with real-world applications,” he added.

The Israeli Institute of Technology continues to be at the forefront of groundbreaking solutions to help protect our planet.

This development coincides with Better Speech and Hearing Month

Israeli scientists at the Technion – Israel Institute of Science have engineered a working ear, alongside Sheba Medical Centre.

Led by Professor Shulamit Levenberg of the Faculty of Biomedical Engineering, the team combined techniques of organ printing, tissue engineering and the extraction of human cells to create a custom implant that can be used to replace ears that don’t develop properly in utero.

The scaffold, which allows for the formation of the new ear, is designed from a CT scan of the patient’s ear.

It is hoped the breakthrough will significantly help children with microtia – a condition in which the underdeveloped ear is small, malformed and sometimes unable to hear. 

Previously, it was treated using cartilage tissue from the ribs, which is both painful and comes with the risk of added complications. The new surgery can also be performed at the age of six instead of after 10, which may also help reduce the psychological effects for children who, up until now, have had to start school with a malformed ear.

It could also be tailored to “other applications, such as nasal reconstruction and fabrication of various orthopedic implants”, Professor Levenberg hopes.

Microtia affects 0.1% to 0.3% of births.

Each May, Better Hearing and Speech Month helps raise awareness about communication disorders and hearing health.

The Israeli Institute of Technology continues to be at the forefront of groundbreaking solutions to help protect our planet 

PixCell Medical’s HemoScreen performs a CBC in five minutes, enabling infection-vulnerable patients to spend less time in the clinic environment.

Chemotherapy patients are at major risk of infection because they are immunocompromised. Limiting the time they spend in hospitals or clinics for treatments could therefore be a lifesaver.

Israeli company PixCell Medical can help by enabling cancer patients to perform pretreatment blood tests rapidly onsite — or, in the future, at home.

PixCell’s HemoScreen device is FDA-cleared for point-of-care complete blood count (CBC) tests.

Using a disposable cartridge that includes all necessary reagents and requires no maintenance or calibration, HemoScreen delivers lab-accurate data from a single finger-prick of blood within five minutes.

CBC results show up on the HemoScreen in about five minutes. Photo courtesy of PixCell

“Even before we get approval for home use, we can improve the life of cancer patients dramatically,” says Armin Schon, PixCell’s chief commercial officer.

“They get blood drawn before chemotherapy and if their white blood cell count has recovered sufficiently since the last treatment, they can get the next dose. If not, they are sent home. They have to sit and wait till the central lab returns results, which takes half an hour to several hours,” he explains.

“This is very unpleasant for the patient and inefficient for the clinic’s workflow. Our CBC analyzer can shorten that wait time to a few minutes. A staff member can roll it around from patient to patient and within five minutes say, ‘You are good to go’ or ‘Sorry, come back next week.’”

Armin Schon, CCO of PixCell Medical. Photo courtesy of PixCell

A clinical trial in Denmark led by Changing Cancer Care successfully trained 12 breast-cancer patients to use PixCell’s HemoScreen to perform their CBC test at home. Their results were compatible to standard hospital lab results.

“With HemoScreen, we can potentially save patients significant time and energy exertion when undergoing these serious treatments, and also save time and costs for hospitals,” said Dr. Niels Henrik Holländer, head of Changing Cancer Care and an oncologist at Zealand University Hospital in Næstved.

Into the community

“From day one, the HemoScreen was developed with the goal to be usable by basically everyone with just half an hour or so of training,” says Schon.

“For maximum deployment we want to be independent of expert users, laboratory technicians and other highly skilled people who usually operate this type of equipment, and really go into the community,” he says.

“However, regulatory authorities are very hesitant to allow non-medical personnel to operate this type of equipment, so we have an uphill battle to convince them that this is a safe use and will bring value in the treatment of home-based patients. There’s only one way to do that, and that’s clinical trials.”

To that end, the Danish Ministry of Health has approved a second bigger trial to be done in Denmark and Germany that will include patients with various types of cancer at more advanced stages.

It is these patients who stand to benefit most from spending less time in a clinic, Schon points out.

“We believe that will provide the evidence we need to get approval in Europe for home-based CBC measurements,” he says, and FDA approval for home use could take several more years.

Meanwhile, PixCell won a grant from the International Health-Tech Pilot Program — an alliance between the Israel Innovation Authority and leading US and Europe hospitals — to develop and validate additional applications for HemoScreen.

In addition, the product was named a gold winner in the Testing and Diagnostic Products and Systems category in the 2022 Medical Design Excellence Awards and received Best-in-Show honors.

Devices in 18 countries

Headed by microfluidics expert Avishay Bransky, PixCell Medical was founded in 2009 and launched HemoScreen in the market two years ago.

Although the pandemic prevented the company from traveling internationally to demonstrate HemoScreen, several hundred devices were sold through distributors in 18 countries.

Now, says Schon, “production is fully loaded with orders. We have just opened a US subsidiary, so commercialization is going at full speed.”

Many hospitals have ordered HemoScreen to improve workflow, Schon reports. “Emergency departments in particular benefit from getting results in five minutes.”

However, the device originally was designed for “extreme point of care” uses, such as rural clinics.

It was for just such a purpose that PixCell donated a HemoScreen device, along with hundreds of cartridges, to Ukraine via the Ukrainian Embassy in Tel Aviv.

Schon says the HemoScreen could be used for quick testing and triaging of refugees on the border or in hospitals.

“The reason we dare to donate this system to Ukraine is that a nurse can unbox it and start testing – you just need electricity and reasonable temperatures. The box comes with a leaflet explaining how to do it, and there are short training videos. Within 15 minutes of unboxing you can be using the device.”

Another use of the HemoScreen is for assessing the effects of certain psychiatric drugs that require regular lab visits and venous blood draws because they have potentially lethal effects on the immune system that must be monitored, Schon explains. “We can revolutionize this area by reducing the inconvenience and taking the needle anxiety away.”

Three-day annual conference, marking 20th year, brings together thousands of participants for newest innovations in medical and heath tech

Some of the innovative scientific developments behind leading food technologies, as well as new cancer treatments, will take center stage at the upcoming Biomed Israel summit next week, an annual conference on life sciences and health tech that brings together scientists, healthcare professionals, entrepreneurs, and investors from dozens of countries across the world.

This year, the three-day conference is marking its 20th anniversary with 10 different tracks — infectious diseases, robotics in the medical field, and AI and machine learning, among others, in addition to precision cancer diagnostics and therapies, and “bio food” and its impact on human health. Each track will be chaired by a professional leader in their relevant field and the conference, which organizers say expects about 6,000 people, will also host an exhibition where hundreds of Israeli companies can present their products and technologies.

Dr. Tammy Meiron, CTO at Israel’s Fresh Start Food Tech Incubator and the chair of the food tech track, told The Times of Israel that the sessions will focus on “bio-food technologies and how we adapt biotech into the food tech arena to produce more sustainable food.”

“There’s a growing consensus that, due to the climate crisis, we have to find better ways to feed the growing [world] population. There are increasing demands for food and there are ethical aspects of growing our food from animals,” said Meiron.

“This younger generation is more aware of this [issue], and it’s also the first generation to come to realize the dangers of the climate crisis,” she added. These dangers have been described as a “code red for humanity” that requires urgent action by the United Nations Intergovernmental Panel on Climate Change (IPCC).

“We have a window of about 10 years. It is critical that we deliver solutions in food tech,” she said.

In this file photo taken on October 22, 2020, a farmer walks among orange trees dried out by drought on Morocco’s southern plains of Agadir in the country’s agricultural heartland. (Fadel Senna/AFP)

Meiron is an experienced food tech professional, having headed the protein department at US biochemical company Sigma Aldrich (later acquired by Merck) where she led production on more than 450 different proteins and enzymes, before joining Fresh Start in 2019.

The food tech incubator, based in the northern Israel city of Kiryat Shmona, is a project led by the Israel Innovation Authority together with Israeli company Tnuva, beverage firm Tempo, Israeli investment company OurCrowd, and Finistere Ventures, a global investor in food tech and agritech.

“We incubate companies for 2-3 years and bring them to the next level of investment. So far we have supported eight companies and intend to support at least 40 by 2028,” she explained.

Fresh Start is currently working with seven companies including one that is developing cell-cultured fish and two that are working on sugar reduction technologies.

An illustrative photo of cell-cultivated fish created by Israeli food tech startup Wanda Fish. (Marcomit)

During the conference next week, a number of known companies will be presenting, including Future Meat and Aleph Farms, leading developers of cultivated meat, and Wilk, a developer of animal-free cultured milk and cell-based human milk.

Meiron believes food tech such as cultivated meat and fish, alternative protein, animal-free milk and dairy, and others, can help ensure food security in the decades to come. “The weather and the agriculture won’t be the same. We will have to adapt,” she said.

Her track at the Biomed conference will cover new biotech technologies that are now applied to food production to help solve these issues and release the reliance on traditional agriculture for more sustainable methods.

Challenges the industry faces will also be addressed including pricing, scalability, resources, and infrastructure. “It costs thousands of dollars to make food in a lab, it’s a huge issue. We need people to choose these options as their food,” said Meiron.

At the same time, investors are flocking to the industry. “We saw a dramatic acceleration in the last 2 years, VCs now all want a piece of food tech. We’re seeing a lot of money [being invested] because of the understanding that this is a critical issue,” she said.

A rib-eye steak produced from meat cells cultivated in a laboratory by Israeli start-up Aleph Farms. (Courtesy: Aleph Farms/Technion Institute of Technology)

In Israel, the alternative protein sector, a segment of its vibrant food tech industry, grew by about 450% in 2021 from the previous year, with Israeli startups in the field raising some $623 million in investments, according to a report released in March. The Good Food Institute (GFI) Israel, a nonprofit organization that seeks to promote research and innovation in food tech, found that the $623 million in investments accounted for about 12% of the global capital raised for the sector worldwide last year (about $5 billion) and was “second only to the US.”

The next stage in food tech, Meiron said, was the “enabling tech that facilitates the tech of companies that already raised money, to reduce pricing and so on.”

Precision oncology

In oncology, the next stage is “precision oncology” where cancer treatments are adapted based on individual biology, said Dr. Ofer Sharon, CEO of OncoHost, the developer of a blood test to predict how well cancer patients will react to treatment. Sharon will chair the Biomed track that looks at advancements in cancer therapies and precision-based therapeutics, driven by biomarkers and artificial intelligence tools.

Today, most cancer care treatment plans are “based on protocol, and given to everyone, whether they are a 74-year-old woman or a 35-year-old man; they’ll get the same treatment,” Sharon said.

“Chemotherapy is like carpet bombing and it doesn’t differentiate between healthy cells and cancer cells,” he explained. “The field is now changing to focus on specific targets and adapt treatment to the level of the mutation” while providing customized care based on biology.

The track will hear from two types of companies — those developing targeted drugs that tackle specific mutations and those, like Oncohost, that look for individual biomarkers.

Illustrative image of cancer cells (Design Cells; iStock by Getty Images)

“We look for the biological indications that affect treatment… to identify whether a patient is going to respond to treatment” or help point to another one, said Sharon.

Another company in this field is Nucleai, which uses computer vision and machine learning to study the characteristics of tumors to help drug companies predict who will react to medication.

This rising field is also facing key issues, such as regulatory hurdles, and a need for a medical “paradigm shift,” said Sharon.

“Fighting cancer is a war, and there is understanding that there is a price. There’s a need to ‘kill the entity’ and doctors want to act as quickly as possible,” Sharon explained. Precision medicine takes a different approach that may take more time but can be much more effective.

The industry also needs closer collaboration with pharmaceutical giants. “There are excellent drugs out there but they work for a minority of patients. To treat cancer, we need a better understanding of this complex disease. It requires education and more awareness,” said Sharon.

The annual Biomed conference in Tel Aviv, 2019. (Courtesy)

On the regulatory side, he said, “there is no regulatory body that can approve [the technologies] in an efficient way.” There is also no regulatory body that specifically examines technologies based on AI and machine learning.

“There is a lot of work to be done for market adoption,” said Sharon.

The Biomed conference will run from May 10 to 12 in Tel Aviv. It is co-chaired by Ruti Alon, founder and CEO of Medstrada, a food tech VC fund, Dr. Ora Dar, a consultant and expert in medical sciences and health innovation and the former head of health and life sciences sector at the Israel Innovation Authority, and Dr. Nissim Darvish, a managing general partner at MeOHR Ventures, a private equity firm that focuses on world-changing cures for serious diseases.