Researchers at the Technion have developed a highly stretchable electronic material and a wearable sensor capable of identifying precise bending and twisting motions.

Scientists at the Technion-Israel Institute of Technology have produced a highly stretchable electronic material and a wearable sensor capable of identifying precise bending and twisting motions.

Essentially, it is an electronic skin.

The development will be able to help identify ailments and disease, for example, the early onset of Parkinson’s, or help amputees adapt to prosthetics, the developers have said.

It recognizes the range of movements that human joints normally makes with the precision of up to half a degree. This breakthrough is the result of collaborative work, headed by Professor Hossam Haick from the Wolfson Faculty of Chemical Engineering.

It was recently published in Advanced Materials, a peer-reviewed journal. 

Professor Haick’s lab focuses on wearable devices. Wearable motion sensors can currently recognize bending movement, but not twisting. Sensors that recognize twisting are large and cumbersome.

Ph.D candidate Yehu David Horev and postdoctoral fellow Dr. Arnab Maity have found a way to overcome this problem. Horev found a way to form a composite material that is both usable as a sensor and is flexible, stretchable, breathable, biocompatible, and does not change its electrical properties when stretched.

Dr. Maity was able to solve the mathematics of analysing the received signal.

Professor Hossam Haick (credit: TECHNION SPOKESPERSON’S OFFICE)

The novel sensor is breathable, durable and lightweight, allowing it to be worn by humans for long periods of time. 

“This sensor has many possible applications,” Prof. Haick stated. 

“It can be used in early disease diagnosis, alerting of breathing alterations, and motor system disorders such as Parkinson’s disease. It can be used to assist patients’ motor recovery and be integrated into prosthetic limbs. In robotics, the feedback it provides is crucial for precise motion. In industrial uses, such sensors are necessary in monitoring systems.”

TECHNION SCIENTISTS CREATED A WEARABLE MOTION SENSOR CAPABLE OF IDENTIFYING BENDING AND TWISTING

One doesn’t pay much attention to sensors, but they are omnipresent in modern life. A sensor is a device that responds to a physical stimulus such as heat, light, sound, pressure, magnetism or a particular motion and transmits a resulting impulse as for measurement or operating a control. It measures physical input from its environment and converts it into data that can be interpreted by either a human or a machine.

The most frequently used types of sensors are classified according to hat they react to – electric current or magnetic or radio sensors, humidity, fluid velocity or flow, pressure, temperature sensors, proximity sensors, optical sensors or position sensors.

Sensors are used in everyday objects such as touch-sensitive elevator buttons, lamps that brighten or dim by touching the base, along with innumerable applications of which most people are unaware. 

Aside from home use, sensor applications include manufacturing, medicine, machinery, planes and aerospace, vehicles, robotics and many other aspects of life. 

Wearable strain sensors have been attracting special attention in the detection of human posture and activity, as well as for the assessment of physical rehabilitation and kinematic, but it is a challenge to fabricate stretchable and comfortable-to-wear permeable strain sensors that can provide highly accurate and continuous motion recording while exerting minimal constraints and maintaining low interference with the body. 

Now, scientists at the Technion-Israel Institute of Technology in Haifa have created a wearable motion sensor capable of identifying bending and twisting. Made from a highly stretchable electronic material, it is essentially an electronic skin capable of recognizing the range of movement human joints normally make, with up to half a degree precision. 

This breakthrough is the result of collaborative work among researchers from different fields in the Laboratory for Nanomaterial-Based Devices, headed by Prof. Hossam Haick from the Wolfson Faculty of Chemical Engineering. It was recently published in Advanced Materials under the title “Stretchable and Highly Permeable Nanofibrous Sensors for Detecting Complex Human Body Motion”

and was featured on the journal’s cover.

The new sensor has many possible applications,” said Haick. “It can be used in early disease diagnosis, alerting of breathing alterations, and motor system disorders such as Parkinson’s disease. It can also assist patients in their motor recovery and be integrated into prosthetic limbs. In robotics, the feedback it provides is crucial for precise motion. In industrial uses, such sensors are necessary in monitoring systems, putting them at the core of the Fourth Industrial Revolution.”

This breakthrough is the result of collaborative work between researchers from different fields in the Laboratory for Nanomaterial-Based Devices, which Haick heads. 


At present, existing wearable motion sensors can recognize bending movement, but not twisting. Existing twisting sensors, on the other hand, are large and cumbersome and cannot be worn.. This problem was overcome by doctoral candidate Yehu David Horev and postdoctoral fellow Dr. Arnab Maity. 

Horev found a way to form a composite material that was both conductive – and thus, usable as a sensor – and flexible, stretchable, breathable and biocompatible, I also did not change its electrical properties when stretched. 

Maity then solved the mathematics of analyzing the received signal, creating an algorithm capable of mapping bending and twisting motion – the nature of the movement, its speed and its angle. The novel sensor is breathable, durable and lightweight, making it possible to be worn on the human body for prolonged periods.

“Electrically conductive polymers are usually quite brittle,” explained Yehu about the challenge the group had overcome. “To solve this, we created a composite material that is a little like fabric. The individual polymer ‘threads’ cannot withstand the strain on the material, but their movement relative to each other lets it stretch without breaking. It is not too different from what lends stretch to T-shirts. This allows the conductive polymer withstand extreme mechanical conditions without losing its electrical properties.”

What makes this achievement more important is that the materials the group used are very inexpensive, resulting in a cheap sensor. “If we make a device that is very expensive, only a small number of institutions in the Western world could afford to use it. We want the technological advances we achieve to benefit everyone, regardless of their geographic location and socioeconomic status,” said Haick. True to his word, among the laboratory’s other projects is a tuberculosis-diagnosing sticker patch, which is sorely needed in developing countries.

Haick is an expert in the field of nanotechnology and non-invasive disease diagnosis who earned his doctorate from the Technion in 2002. After graduation, he completed two postdoctoral fellowships – first at the Weizmann Institute of Science in Rehovot and then at California Institute of Technology. He returned to the Technion at the end of 2006 as an assistant professor, becoming a full professor in 2011. 

He has published more than 220 publications in top-level journals in the field of nanotechnology, advanced/applied materials/chemistry and medicine, and technologies he and his team developed have led to the production of more than 42 patents and patent applications – many of which have been licensed to six international companies.

An Arab-Israeli scientist and engineer, Haick is a pioneer known for inventing the Nano Artificial Nose for detection of disease from exhaled breath.  He was included in more than 80 top-rank listings worldwide, including the “MIT Technology Review” list of 35 leading young scientists in the world, the “50 Sharpest Israeli Minds” and  the world’s top-100 influential innovators in the Digital Technology by Nominet Trust in London. 

A team of scientists has found why elderly people are more susceptible to COVID-19 and are working to reverse the aging process of the body’s immune system

Scientists from the Technion-Israel Institute of Technology say they have found a way to rejuvenate the aging process of the body’s immune system.

Prof. Doron Melamed and doctoral student Reem Dowery sought to understand why the elderly population is more susceptible to severe cases of COVID-19 and why the vaccines seem to be less effective and wane faster among this population.

The results of their work were published this month in the peer-reviewed, online medical journal Blood.

The secret begins with B cells, also known as B lymphocytes. These are the cells that produce antibodies against any pathogen that enters the body. They play a key role in protecting people from viruses and diseases.

B cells are produced in bone marrow and then travel through the blood to lymph nodes and the spleen, where they wait for pathogens to enter and then attack them.

“When you are young, you have young cells, and young cells have a very diverse ability to recognize anything [pathogenic] that comes into your body,” Melamed told The Jerusalem Post.

B cells do not live long, but they are constantly being replenished by new ones sent from the bone marrow, creating what Melamed calls “homeostasis,” a state in which the total number of B cells in the bone marrow and outside remains constant.

However, B cells do not just disappear. They turn into “memory” B cells so that if the body is exposed to a previous pathogen, the individual will not get sick. That is because the immune response will be fast and robust, and it will eliminate the pathogen, often without the individual knowing he or she had been exposed to it.

Unlike B cells, memory cells are long-lived.

“Imagine you are growing into adulthood, and you become an adult and then an older person,” Melamed said. “You accumulate in your body many memory cells. You are exposed all the time to pathogens, and hence you make more and more memory cells. Because these are so long-lived, there is no room left for new B cells.

”What happens when a new pathogen, such as the coronavirus, comes along? There are no young B cells that can recognize it.

That is one of the reasons why older people are more susceptible to severe COVID-19 and many other diseases.

As noted, this happens because of the body’s need for homeostasis, something that Melamed’s lab discovered a decade ago.

BUT THIS year, they took the discovery another step and figured out a mechanism to override the system.

“We found specific hormonal signals produced by the old B cells, the memory cells, that inhibit the bone marrow from producing new B cells,” Melamed said. “This is a huge discovery. It is like finding a needle in a haystack.

”It also means that, over time, specific drugs or treatments can be found to inhibit one of the hormones in the signaling pathway and get the bone marrow to produce new B cells.

Melamed Research group (credit: NITZAN ZOHAR/TECHNION SPOKESPERSON’S OFFICE)

What happens when a new pathogen, such as the coronavirus, comes along? There are no young B cells that can recognize it

.That is one of the reasons why older people are more susceptible to severe COVID-19 and many other diseases.

As noted, this happens because of the body’s need for homeostasis, something that Melamed’s lab discovered a decade ago.

BUT THIS year, they took the discovery another step and figured out a mechanism to override the system.
“We found specific hormonal signals produced by the old B cells, the memory cells, that inhibit the bone marrow from producing new B cells,” Melamed said. “This is a huge discovery. It is like finding a needle in a haystack.

”It also means that, over time, specific drugs or treatments can be found to inhibit one of the hormones in the signaling pathway and get the bone marrow to produce new B cells.

To validate their theory, Melamed’s lab collaborated with the departments of hematology and rheumatology at Sourasky Medical Center in Tel Aviv and Rambam Health Care Campus in Haifa. As part of treatment for some medical conditions, such as lupus, lymphoma and multiple sclerosis, patients undergo B cell depletion, meaning a significant amount of memory B cells is removed from their bodies.

Examining older patients who underwent this procedure, the group found that their immune systems rejuvenated, and their bodies could produce new B cells again.

An effect similar to B cell depletion can be produced by inhibiting one of the hormones in the signaling pathway that suppresses the production of new B cells.

“Now we understand that there is some kind of conversation between compartments in the body, between how B cells are produced and what controls that,” Melamed said.

In the interim, he recommended that doctors use this knowledge to protect the elderly better, such as by instituting a vaccination program targeted just for the adult population that preempts variants with an additional shot.

“Even every three or four months, vaccinate them again and again to ensure they maintain high antibodies,” Melamed said.

He also suggested mixing vaccines, such as combining a shot of a Pfizer mRNA vaccine with an AstraZeneca booster given several months later, “which may generate better stimulation of the elderly immune system.

”At the same time, clinical trials would be needed to determine how to safely inhibit the hormones to find a longer-term solution, hopefully before the next pandemic, Melamed said.