Alpha Omega, a revolutionary biomedical startup from Nazareth is valued at hundreds of millions of dollars and is writing a new and fascinating chapter in Israeli high tech history

When Reem and Imad Younis launched the technological system they developed, it filled the biomedical community with hope and excitement. The system’s great potential, which started a revolution in intracranial navigation during operations, immediately captivated many. Naturally, all the excitement and wonder raised several eyebrows: when a senior Israeli brain researcher sent an exclamatory email to his colleague overseas, sharing the news of the system, the colleague asked where the company’s offices are based, and thought the researcher was joking. 

The address was Maayan Mariam Square in Nazareth, a place that has long been considered a holy religious pilgrimage site for Christians, and differs drastically from the high tech hub in central Israel. The company’s idea was born in the home of young Arab engineer Imad Younis in 1993. Over the past few years, the company has become a leader in the field of surgical intracranial navigation, and has also created lab equipment for conducting brain research. The company owes its success to its founders Imad (60) and his spouse Reem (57) who opened Nazareth’s gates, turning the city into the capital of the Arab high tech industry in Israel, which today houses no less than 70 companies.

The couple founded the company in their youth (pictured). Photo: Courtesy of Younis family

Due to these impressive achievements, Reem and Imad were awarded the 2018 Industry Leaders Medal, at a special ceremony that took place at the Israeli President’s Residence in Jerusalem. But despite their breakthrough success, Alpha Omega remains private, and is owned by family, preserving its intimate character. Currently, it only employs 120 people – 48% of them women compared to the average of 33% in Israeli high tech. “We’re a small company that’s playing in the big leagues,” Imad said during an interview with Calcalist. “Our customers are Medtronic, Boston Scientific, or Abbott Laboratories, so people have high expectations from us. Surgeons who use our system don’t mind how many employees we have, or whether we’re from Nazareth or New York.”

And the number of surgeons using Alpha Omega’s smart system is growing. It already operates in over 200 different hospitals around the world, and has been used in a large number of life-changing brain surgeries. 

What exactly does your system do?

“In most cases, treating neurological and psychiatric diseases is based on trial and error: the doctor tries a certain medication and examines what effect it has on the patient,” Imad explained. “It’s really difficult, because you need to play around with the dosage, which sometimes causes side effects.” In order to overcome this challenge, researchers developed the Deep Brain Stimulation (DBS) process, a procedure that does not require medication in which a medical device – a neurostimulator complete with electrodes – is implanted in the brain and sends electrical impulses to specific areas of the brain. This stimulation could lessen worsening motor symptoms of neurological diseases like Parkinson’s disease or epilepsy.

Unlike a broken hand, however, which can be spotted from a mere X-ray, brain issues are far harder for doctors to diagnose, since they can’t see into the human brain. In order to do so, they must implant an electrode which can navigate the brain’s pathways, and that’s where Alpha Omega enters the picture. The company creates a separate electrode, which is inserted into the brain via a nail into the skull, and helps surgeons put together a “map” which helps point to the area that needs treatment. Alpha Omega’s technology is swift and precise, which is critical during such operations. “We simplify surgeries,” Imad specifies. “The surgeon can look at MRI images or CT scans, but deciphering neuron activity is tricky. The algorithm we developed analyzes neurotransmitters once the electrode penetrates the point of treatment, and our system builds a picture or an actual map. It enables the surgeon to find the best spot to implant the electrode.”

Once the system spots the problematic area, the surgeon can add additional electrodes (which are created by Medtronic, Boston Scientific, Abbott, and others) that remain inside the brain. A subcutaneous pacemaker, implanted later, activates the permanent electrode, which transmits nerve impulses instead of damaged nerve cells to treat the disease. “After implantation, our system gives neurologists and psychiatrists more options to treat patients: health professionals can try different medications or DBS – and send stronger or weaker pulses.”

The system starred in former Israeli government minister and Likud MK Michael (Miki) Eitan’s surgery, who was diagnosed with Parkinson’s. Since his diagnosis four years ago, the 77-year old politician had become a shadow of his former self – no longer lively, slow-paced, bent over, and shaky. But the surgery brought him back to life, and on a segment broadcast on Israeli television last month, he was shown skipping at home, playing ping pong on the beach, and speaking with the same fluency and alertness which characterized his political career.

“My father didn’t live to receive our treatment”

While the Younis couple is goal-oriented, they’re also a charismatic duo with a sparkle in their eyes. They’re also very loyal to their employees, with nearly a third of their senior management having accompanied Alpha Omega since its founding 28 years ago. They’re also very connected to their Christian Arab community, something that is hinted at from their company’s name. Alpha Omega denotes the first and last letter of the Greek alphabet, and together serve as a godlike symbol in Christianity, signifying the beginning and end of all. But when asked why they chose such a name, Reem provides a far more prosaic explanation. “When we started the company, we didn’t intend for it to be a startup, rather just another subcontractor in the high tech industry. We thought that companies would order our equipment or services, and we’d provide them everything from A to Z – from alpha to omega.”

When Reem is in the operating room next to a Parkinson’s patient, one can only imagine she must wonder what may have been had they developed their technology earlier. Her father, Wadia, developed Parkinson’s when she was a child, and was shuttled from place to place for treatment. In 1995, after three decades of coping with the disease, he passed away, which was “only two years after we founded the company,” she says sadly at the beginning of our conversation. “He didn’t last long enough to receive our treatment. That is the irony of life.”

However, her father did manage to raise a determined woman, who loves challenges, and who never desired to belong to the mainstream. At 18, Reem began pursuing a bachelor’s degree in industrial engineering at the Technion Institute of Technology, and there she met her husband, another Christian Arab, who was a senior college student and electrical engineering major. 

The couple founded Alpha Omega when they were already parents to Dima, their eldest daughter, who today at 30, serves as Product Specialist and manages the company’s international marketing. Their other children also work for the company, including son, Jude, 25, as Business Development Associate and their youngest daughter, Nada, 18. In parallel, they also founded Alpha-Cad Ltd., a company that provides software solutions for engineering, which was later sold. To make an initial investment, they sold their family car and four gold coins that Imad received from his father in case of a “rainy day.”

At the beginning of their journey, the Younises cooperated with two of the leading figures in the DBS arena – doctor and brain researcher Prof. Hagai Bergman from the Hebrew University of Jerusalem, and French-Algerian brain surgeon Prof. Alim Louis Benabid, who is a fellow at the French Academy of Sciences. 

“In Bergman’s post-doctorate which he wrote in the late 80s, he found that Parkinson’s disease could be treated in monkeys, if a small portion of their brain – termed the subthalamic nucleus – was lesioned,” Imad says. “In 1994, Benabid conducted the first such operation on a human to treat essential tremors (the most common symptom in neurological tremor disorders), but his team faced a problem: their intracranial navigation was based on CT, MRI scans, and the like, which weren’t precise enough. In 1997, we reached out to them and offered use of our navigation system which is based on neurotransmitters.” In 1999, they sold their first system in Europe, and a year later entered the U.S. market. In 2002, the Younis couple relocated to the United States for two years with their three children to open the company’s American branch. 

But the company’s real turning point came two years ago: in 2019, only a year after it received its first external investment of $7 million (from the Chinese Guangzhou Sino-Israel Biotech Investment Fund earmarked for expanding the company’s operations in China), the American medical equipment company Medtronic dropped a bomb. It announced that it would be marketing Alpha Omega’s systems worldwide, and in one swift move knocked out all of the company’s market competitors, including its own. “Medtronic recognized our system’s technological and clinical advantages, and decided to abandon their own system and instead sell ours,” Imad revealed. “We are continuing to conduct our own marketing and sales, but they opened the entire world to us. That allowed us to think like leaders.”

And that thought encouraged them to spread the news of DBS around the world. “This treatment is included and covered in the standard healthcare package in Israel, the U.S., and Europe, but it only reaches 10% of the potential population it could help,” Imad says.

Actor and environmental activist contributes undisclosed amount as part of Israeli company’s recent $105m funding round

Actor and environmental activist Leonardo DiCaprio recently invested an undisclosed amount in Israeli alternative meat startup Aleph Farms, a maker of cultivated meat that grows steaks from modified cattle cells, according to an announcement on Wednesday

The investment was made as part of Aleph Farms’ $105 million Series B funding round in July.

The movie star also backed Netherlands-based alt-meat startup Mosa Meat, according to the announcement. The Dutch company unveiled the first cultured hamburger in 2013 and recently announced an $85 million funding round.

Aleph Farms, meanwhile, rolled out the first cultivated steak in 2018 and a cultivated ribeye cut earlier this year.

DiCaprio will be joining both startups as an advisor, according to the statement. The actor has long championed environmentalism with his eco-focused Leonardo DiCaprio Foundation, giving out $100 million in grants for everything from lion recovery and mangrove restoration to the defense of indigenous rights and better access to affordable solar energy.

In 2019, he joined billionaire investors and philanthropists to create a new nonprofit, Earth Alliance, charged with tackling climate change and the loss of biodiversity.

“One of the most impactful ways to combat the climate crisis is to transform our food system,” DiCaprio said in the statement released on Wednesday. “Mosa Meat and Aleph Farms offer new ways to satisfy the world’s demand for beef, while solving some of the most pressing issues of current industrial beef production. I’m very pleased to join them as an advisor and investor, as they prepare to introduce cultivated beef to consumers.”

Aleph Farms thin-cut steak. (Courtesy)

Dr. Didier Toubia, co-founder and CEO of Aleph Farms said that “as a committed environmentalist, we welcome Leonardo DiCaprio to our advisory board and family of top-tier investors. Our team is committed to improving the sustainability of our global food systems and we’re thrilled to have Leo share in our vision.”

“With his passion for and dedication to climate action, we expect this collaboration will lead to great things together,” Toubia added in a video announcement.

“Food systems touch all people, and it will take all of us to make this change happen,” he said.

Toubia founded Aleph Farms in 2017 with Professor Shulamit Levenberg of the Biomedical Engineering Faculty at the Technion – Israel Institute of Technology, alongside Israeli food-tech incubator The Kitchen, a part of the Strauss Group.

To produce its meat, Aleph leverages the ability of animals to grow tissue muscle constantly and isolates the cells responsible. It then reproduces the optimal conditions for these cells to grow into tissue, basically growing meat outside the animal.

A rib-eye steak produced from meat cells cultivated in a laboratory by Israeli start-up Aleph Farms. (Courtesy: Aleph Farms/Technion Institute of Technology)

The tissue is grown in tanks that act as fermenters, similar to those in a brewery. There the cells are nurtured and shaped into a 3D structure that makes the meat.

Aleph Farms’ most recent investors include L Catterton, an American-French consumer-focused private equity firm with over $30 billion in equity capital, and DisruptAD, the venture capital arm of the Abu Dhabi holding company ADQ. The startup is also backed by a consortium of global food and meat companies, including Thai Union, BRF, and CJ CheilJedang.

The company has raised more than $110 million to date and has plans for a market launch in 2022. It signed an agreement earlier this year with Mitsubishi Corporation’s Food Industry Group to bring cultivated meat to the Japanese table.

Aleph Farms’ leadership team from left: Technion Professor Shulamit Levenberg, co-founder and chief scientific adviser; Didier Toubia, co-founder and CEO; Dr. Neta Lavon, chief technology officer and VP of Research and Development. (Rami Shalosh)

The Israeli firm has also set up similar partnerships with other multinationals: The Swiss industrial group Migros and the United States-based food corporation Cargill have also invested in the startup.

Aleph Farms is a leading player in a growing Israeli food tech sector. The global cultivated meat industry could reach $25 billion by 2030, according to analyst estimates.

SOURCE

Leonardo DiCaprio is investing in Israel’s Aleph Farms

The actor is joining Aleph and Dutch foodtech company Mosa Meat as an investor and adviser in the growing global movement to support sustainable technologies and transform the way meat is produced

Israel’s Aleph Farms and Dutch company Mosa Meat, two foodtech companies in the emerging field of cultivated meat, announced on Wednesday an investment from environmental activist and Academy Award actor, Leonardo DiCaprio. Both companies have demonstrated their ability to grow beef directly from animal cells, with the unveiling of the first cultivated hamburger by Dutch Mosa Meat in 2013 and the first cultivated steak and ribeye by Aleph Farms in 2018 and 2021. 

“One of the most impactful ways to combat the climate crisis is to transform our food system. Mosa Meat and Aleph Farms offer new ways to satisfy the world’s demand for beef, while solving some of the most pressing issues of current industrial beef production. I’m very pleased to join them as an adviser and investor as they prepare to introduce cultivated beef to consumers,” DiCaprio said.

Hollywood actor Leonardo DiCaprio is investing in Aleph Farms. Photo: Shutterstock 

With global meat consumption projected to grow between 40%-70% by 2050, cultivated meat offers a solution to reduce negative impacts of industrial beef production, which uses precious sources such as land, water, and also causes harm to animals, while being a leading cause of carbon and nitrogen emissions. Cultivated meat will enable diners to enjoy the qualities of the meat they love, while eliminating the need for cutting out meat altogether. Analysts have projected the cultivated meat market could reach $25 billion by 2030, as part of the broader protein transformation. 

According to an independent Life Cycle Analysis study, cultivated beef production is projected to reduce climate impact by 92%, air pollution by 93%, and use 95% less land and 78% less water when compared to industrial beef production. 

“As a committed environmentalist, we welcome DiCaprio to our advisory board and family of top tier investors. Our team is committed to improving the sustainability of our global food systems and we’re thrilled to have Leo share in our vision,” Didier Toubia, co-founder and CEO of Aleph Farms said. 

Aleph Farms grows beef steaks, from non-genetically engineered cells isolated from a living cow, without harming animals and with a significantly reduced impact to the environment. The company is supported by The Kitchen Hub of the Strauss Group, and Professor Shulamit Levenberg from the Biomedical Engineering Faculty at the Technion – Israel Institute of Technology. Some of its investors include L. Catterton, DisruptAD (ADQ), BRF, Thai Union and Cargill.

Mosa Meat is a global food technology company pioneering a cleaner, kinder way of making real beef. Headquartered in Maastricht, the Netherlands, Mosa Meat is a privately-held company backed by Blue Horizon, M Ventures, Bell Food Group, Nutreco, Mitsubishi Corporation and others.

SOURCE

DiCaprio invests in Israeli cultivated meat co Aleph Farms

The Rehovot-based company has cultivated the world’s first slaughter-free ribeye steak, using 3D bio-printing technology.

Israeli cultivated meat company Aleph Farms has announced that the actor Leonardo DiCaprio has invested in the company and will join its advisory board. DiCaprio is also investing in Dutch cultivated meat company Mosa Meat.

DiCaprio said, “One of the most impactful ways to combat the climate crisis is to transform our food system. Mosa Meat and Aleph Farms offer new ways to satisfy the world’s demand for beef, while solving some of the most pressing issues of current industrial beef production. I’m very pleased to join them as an advisor and investor, as they prepare to introduce cultivated beef to consumers.”

DiCaprio invested in Rehovot-based Aleph Farms as part of its $105 million financing round completed in July. The amount of the investment has not been disclosed.

Aleph Farms cofounder and CEO Didier Toubia said, “As a committed environmentalist, we welcome Leonardo DiCaprio to our advisory board and family of top tier investors. Our team is committed to improving the sustainability of our global food systems and we’re thrilled to have Leo share in our vision.”

Aleph Farms was founded by Israeli food company Strauss Group together with Prof. Shulamit Levenberg of the Faculty of Biomedical Engineering at the Technion – Israel Institute of Technology and Toubia and has cultivated the world’s first slaughter-free ribeye steak, using 3D bio-printing technology and natural building blocks of meat – real cow cells, without genetic engineering.

SOURCE

Leonardo DiCaprio Invests In Israeli Cultivated Meat Startup Aleph Farms

Leonardo DiCaprio at the United Nations, 2012, in a photo taken by Christopher Camp via Flickr (CC by 2.0)

Academy Award-winning actor and environmental activist Leonardo DiCaprio recently invested an undisclosed amount in Israeli startup Aleph Farms, a cultured meat startup that has created slaughter-free steak and ribeye from cattle cells. His investment was part of the company’s $105 million Series B funding round in July, according to an announcement. released on Wednesday.

He also invested in Dutch alternative meat startup Mosa Meat, Aleph Farms and Mosa Meat said in the statement. The Netherlands-based company is known for unveiling the first cultured hamburger in 2013.

Aleph Farms is also known for unveiling the “world’s first” cultivated steak in 2018 and a cultivated ribeye steak earlier this year.

“One of the most impactful ways to combat the climate crisis is to transform our food system,” DiCaprio said in the announcement, “Mosa Meat and Aleph Farms offer new ways to satisfy the world’s demand for beef, while solving some of the most pressing issues of current industrial beef production. I’m very pleased to join them as an advisor and investor, as they prepare to introduce cultivated beef to consumers.”

DiCaprio has a long association with environmental activism and social responsibility, which started early on in his career. In 1998, at the age of just 24, the Oscar-winning actor established the Leonardo DiCaprio Foundation (LDF) with the purpose of raising awareness about environmental issues threatening the health of the planet and to date, has awarded more than $80 million in grants, funding over 200 projects in 50 countries.

In addition, the philanthropist also serves on the board of several environmental protection organizations including the World Wildlife Fund, the Natural Resources Defense Council, International Fund for Animal Welfare, Pristine Seas and Oceans 5. He is also an advisor on The Solutions Project, an organization dedicated to scaling up the adoption of clean, renewable energy.

He also has a history of investing in Israeli eco-friendly projects, including a green hotel at the Herzliya marina, as well as promoting the development of – at the time – in January 2017, the world’s tallest solar thermal tower created by Megalim at the Ashalim solar complex in the Negev.

Aleph Farms has consistently made the news over the last several years as it attempts to disrupt the traditional meat market with its cultured, slaughter-free meat. It grows beef steaks, from non-genetically engineered cells isolated from a living cow, without harming animals and with a significantly reduced impact to the environment.

The company was co-founded in 2017 by Didier Toubia, The Kitchen Hub of the Strauss Group, and Professor Shulamit Levenberg from the Biomedical Engineering Faculty at the Technion – Israel Institute of Technology.

In January, the company announced an agreement with Japanese multinational Mitsubishi Corporation’s Food Industry Group to bring cultivated meat to Japan, followed by a deal to operate in Brazil.

The Technion will partner with the Carasso family to renovate the FoodTech building and make it more advanced.

The Technion will be partnering with the Carasso Family and Carasso Motors in revamping the Faculty of Biotechnology and Food Engineering. The building that is currently known as the Food Industries Center will be renovated and turned into the Carasso FoodTech Innovation Center and will be dedicated to promoting cutting-edge food technologies, teaching, research and development (R&D).

The renovations will expand and upgrade the building, making it unique to Israel, and one of the most advanced of its kind in the world. It will include an R&D center for industrial production, a packaging laboratory, an industrial kitchen, and tasting and evaluation units. There will also be a visitors area for high-school students to be exposed to the world of FoodTech and startups.

“Eradicating world hunger and improving food security are among the main challenges facing humanity in the 21st century, as defined by the UN’s Sustainable Development Goals,” said Technion President Prof. Uri Sivan. “The Technion has the only faculty in Israel for research in food engineering, a faculty that leads the Israeli FoodTech industry.

“We are grateful to the Crasso Family for their generous contribution, which will establish the Carasso FoodTech Innovation Center, and will help us promote groundbreaking scientific research in the field, train the next generation of the Israeli FoodTech industry and maintain the faculty’s position at the global forefront of research and development.

“In 1924, our grandfather Moshe immigrated with his family to Israel from Thessaloniki, where he was one of the leaders of the Jewish community,” said Yoel Carasso, chairman of Carasso Motors. In Israel, he cofounded Discount Bank, Ophir Cinema and of course, Carasso Motors. For me and for my uncle Shlomo and my cousins – Ioni, Orli, Tzipa and Arik – this is coming full circle from a century ago.

Yoel Carasso, Chairman of Carasso Motors (Left) and Prof. Marcelle Machluf, Dean of the Faculty of Biotechnology and Food Engineering (credit: RAMI SHLUSH / TECHNION)

“We chose to support the Carasso FoodTech Innovation center since the Technion is synonymous with excellence. The Technion is an engine for combining basic and applied science in the Galilee and in Israel as a whole. We believe the Carasso FoodTech Innovation Center will contribute to the industry and to collaborative work in this field, and thus strengthen the Israeli economy and society. Our family has a history of supporting the Technion, and when the opportunity to establish this center sprang, we knew it was our calling to lead.

“The faculty is one of the only ones in the world that combines the disciplines of bioengineering, technology, food sciences and life sciences,” said Prof. Marcelle Machluf, the faculty’s dean. “Coping with the COVID-19 pandemic has only emphasized the importance of food and biotechnology in maintaining our existence and meeting future existential challenges. To address the many challenges in this field, including access to healthy, affordable food and innovative medical treatments, we need advanced infrastructure that will enable the integration of new engineering and scientific tools; these will enable us to develop the necessary technologies, as well as the infrastructure and equipment that will support the development and assimilation of knowledge required to tackle tomorrow’s food challenges.”

“Carasso Motors, with its various brands – Renault, Nissan, Infinity and Dacia – is committed to innovation and connection with our diverse customer base in Israel,” said Isaac Weitz, CEO of Carasso Motors. “Food technology is an evolving field that brings value in many ways to our stockholders. Food research tackled environmental and global warming challenges, providing food security and a balanced diet, accelerating paramedical developments that combine medicine and food, and of course, contributing to the development of innovative solutions that will put Israel at the forefront of science globally.

“At Carasso Motors, we jumped at the opportunity to make such a significant contribution to the establishment of this advanced research center, which will also improve and advance Israel’s education and society.”

Researchers at the Technion-Israel Institute of Technology have developed a new, low-cost, low-energy system for producing hydrogen from water.

Water electrolysis is an easy way of producing hydrogen gas. While hydrogen is considered a clean, renewable fuel, efficient electrolysis requires high electric potential, high pH and in most cases, catalysts based on ruthenium and other expensive metals.

As detailed in an article in The Journal of the American Chemical Society and reported on the university’s website, Technion researchers have developed a unique system for producing hydrogen from water using little energy and inexpensive materials. Led by Professor Galia Maayan, head of the Biomimetic Chemistry Laboratory at the Schulich Faculty of Chemistry, along with doctoral student Guilin Ruan, this is the fastest system of its kind reported to date that uses available copper catalysts.

Doctoral student Guilin Ruan (Technion Israel Institute of Technology via Twitter)

Maayan and Ruan designed and developed a system in which the catalyst is soluble in water. The system is based on three elements: copper ions; a peptide-like oligomer (small molecule) that binds the copper and maintains its stability; and a compound called borate whose function is to maintain the pH in a limited range.

The major innovation in this work is the researchers’ discovery that the borate compound helps stabilize the metallic center and helps catalyze it.

Maayan explained that the inspiration for the new system came from enzymes (biological catalysts) that use the protein’s peptide chain to stabilize the metallic center and by natural energetic processes such as photosynthesis, which are driven by units that use solar energy to transport electrons and protons.

The research was supported by the Israel Science Foundation (ISF) and the Nancy and Stephen Grand Technion Energy Program.

Israel’s leading tech institution, the Technion, has been rated the number one institute in leading European machine-learning research in a rating by CSRankings.

Israel’s leading tech institution, the Technion, has been rated the number one institute leading machine-learning research in Europe in a rating by CSRankings. The rating is based on data gathered between 2016 and 2021.

The Technion also placed 15th globally in artificial intelligence research and 11th in machine learning.

Some 46 people are researching AI at the Technion and over 100 are conducting research in the fields of industrial robotics, cybersecurity and smart vehicles. Some 42 of these researchers have done work that was published up to 30 times at computer science conferences, according to the rankings.

The Technion’s Machine Learning and Intelligent Systems research center has led groundbreaking research in AI both in Israel and worldwide, collaborating with other institutions involved in research in the field such as Carnegie Mellon University and American software company PTC, and connecting researchers with the industry.

The Computer Science Faculty building at Technion University in Haifa, Israel (credit: BENY SHLEVICH/WIKIMEDIA COMMONS)

“We are very proud of the recognition The Technion has received in its contribution to artificial intelligence – especially as it continues to make deep and personal connections with others in the field and a significant impact on what we can hope to expect from it in the future,” the Director of Technion UK, Alan Aziz, said.

The Technion – Israel Institute of Technology in Haifa has attained global prestige for work in numerous scientific fields, including life sciences, biotechnology, stem-cell research, sustainable energy, water management, materials engineering and aerospace and information technology. Over 13,000 students currently attend the university.

Dr. Martin Ellis, Chairman of the Israel Society of Hematology and Transfusion Medicine, spoke to The Jerusalem Post about two newer treatments for the main types of blood cancer.

Although only around five out of every 100,000 people suffer from blood cancer, the disease is among the most serious and deadly.

An estimated 68,000 people die from blood cancer each year in the United States alone, according to the Leukemia Research Foundation. The statistics in Israel are unknown.

But new and innovative treatments are being explored, according to Dr. Martin Ellis, Chairman of the Israel Society of Hematology and Transfusion Medicine.

He spoke to The Jerusalem Post about two newer treatments for the main types of blood cancers, leukemia, lymphoma and myeloma, in recognition of Blood Cancer Awareness Month.

For starters, CAR-T cells are currently playing a key role in treating people with blood cancer.

“We remove the T-cells from the patient and send them to the lab, where they get engineered using genetic engineering technology to identify specific molecules on the surface of the patient’s cancer,” Ellis, who is also head of the Hematology Department at Meir Medical Center in Kfar Saba, explained. “These engineered CAR-T cells are re-infused into the body intravenously. Then, the modified cells seek and destroy the malignant cells in the body.”

A model of the protein (the blue ribbon) and the DNA (the spheres) is binds (credit: WEIZMANN INSTITUTE OF SCIENCE)

He said the treatment is generally used on people with lymphoma and multiple myeloma, and specifically those who had prior treatments that did not work or had been in remission and the cancer came back.

“CAR-T can achieve a remission in the region of 60% to 70% of patients,” Ellis said. “And it appears that around 30% are actually cured. This is an unprecedented rate of success in the realm of cancer therapy.”

Doctors are already using the patient’s own immune system to attack his or her tumors, but on the horizon will be the use of CRISPR technology, which is “basically modifying as you would with an eraser and pencil the sequence of DNA in tumor cells and replacing the abnormal part of the DNA with normal DNA,” he explained.

So far, this has been done successfully in benign hematology, but not in malignant hematology. It is “trickier when it comes to cancer cells because the abnormalities are many and vary from cell to cell,” Ellis said. But he added that he expects doctors and scientists to get there soon.

Israel has been at the forefront of the next generation of blood cancer treatments. The CAR-T technology was first conceived and developed in the Weizmann Institute of Science by renowned immunologist Zelig Eshhar.

Moreover, Israeli Nobel Prize winning scientists Aaron Ciechanover and Avram Hershko from the Technion discovered a pathway responsible for the degradation of proteins, which was crucial to the creation of proteasome inhibitors that slow the degradation of proteins and hence inhibit the progression of cancer. Specifically, one of the most successful drugs used to treat multiple myeloma, Bortezomib, is based on this discovery.

“When it comes to treating blood cancers, the Israeli contribution has been significant and, as usual, out of proportion to our population and size,” Ellis said. 

For the first time, Technion scientists succeeded in constructing a network of major and small blood arteries, crucial for giving blood to implanted tissue

Researchers lead by Technion Professor Shulamit Levenberg, who specialises in tissue engineering, have succeeded in establishing a hierarchical blood artery network, crucial for giving blood to implanted tissue. In the research published in Advanced Materials, Dr. Ariel Alejandro Szklanny employed 3D printing for constructing huge and small blood arteries to form for the first time a system that comprised a functioning combination of both. The breakthrough took accomplished in Prof. Levenberg’s Stem Cell and Tissue Engineering Laboratory in the Technion’s Faculty of Biomedical Engineering.

The heart pumps blood into the aorta, which branches out into progressively smaller blood arteries, bringing oxygen and nutrients to all the tissues and organs. Transplanted tissues, as well as tissues created for transplantation, require similar blood vascular support.

Printing Blood Vessel Networks for Implantation

Previous experiments with synthetic tissue containing hierarchical vessel networks have involved an intermediary step of transplanting first into a healthy limb, enabling it to be infiltrated by the host’s blood vessels, and then transferring the structure into the damaged location.

Notably, whereas prior studies employed animal collagen to create the scaffolds, the Israeli company CollPlant modified tobacco plants to make human collagen, which was successfully used for 3D bioprinting the vascularized tissue structures.

This study is a significant step forward in the direction of individualized medicine. Large blood vessels with the precise shape required can be manufactured and inserted alongside the tissue to be implanted. This tissue can be created using the patient’s own cells, hence avoiding the possibility of rejection.

Notably, whereas prior studies employed animal collagen to create the scaffolds, the Israeli company CollPlant modified tobacco plants to make human collagen, which was successfully used for 3D bioprinting the vascularized tissue structures.

This study is a significant step forward in the direction of individualized medicine. Large blood vessels with the precise shape required can be manufactured and inserted alongside the tissue to be implanted. This tissue can be created using the patient’s own cells, hence avoiding the possibility of rejection.

SOURCE

The future of personalised medicine: Technion team built blood tree from scratch

Currently, transplanted grafts need to be implanted into a healthy part of the body so that the patient can generate new blood vessels to support it.

Engineered blood vessels in Technion study. Vascular structures in the scaffold lumen (brown) communicate with vessels located in the surrounding hydrogel (green).
(photo credit: Courtesy)

Skin flaps, bone grafts, implanted tissue – recent advancements in medicine have changed the face of surgery in terms of autologous – meaning self – transplantations.

While extensive damage to organs once meant a nearly sure amputation or need for an external transplant, today’s science focuses on harvesting cells and tissue from a person’s own body to complete the injured pieces of the puzzle, using grafts and flaps to repair skin, vessels, tubes and bones.

Yet, ask any surgeon attempting to insert a flap and they would tell you that the most important – and restrictive – component of a graft’s success is ample blood supply.

A team of researchers at the Technion recently found a way to meet this need. For the first time, these scientists succeeded in 3D printing a network of big and small blood vessels that could provide blood to implanted tissues just like the human body.

Up until now, medicine hasn’t been able to mimic the body’s ability to create a suitable hierarchy in the blood vessel tree. In our bodies, the heart pumps blood into a large tube called the aorta, which measures roughly 2-3 cm in diameter. The blood vessels then branch off into smaller and smaller tubes that are appropriate to each organ’s need and capacity, until they reach minuscule arterioles of only 5 to 10 micrometers.

HUMAN BODY circulatory system showing the heart and blood vessels (credit: FLICKR)

Dr. Ariel Alejandro Szklanny of the Technion team, led by Professor Shulamit Levenberg, a specialist in tissue engineering, found a way to use 3D printing to form a system containing a functional combination of both the large and small vessels.

The new breakthrough may allow a tissue flap to be created in a lab already connected to a blood network suited to its size and function.

Currently, transplanted grafts need to be implanted into a healthy part of the body so that the patient can generate new blood vessels to support it; then, the graft is relocated to an affected area as healthy tissue.

The new technique could potentially eradicate this intermediate step, drastically improving recovery times and cutting down on the number of procedures a patient would need to undergo.

In his recently published study in Advanced Materials, Dr. Szklanny described how he created a polymeric scaffold filled with small holes, mimicking the large blood vessels of the body. These holes allowed the connection of smaller vessels to join into the engineered large vessels. With collagen bio-ink, the team then printed and assembled a complex network around and within the main scaffold, later covering it with endothelial (human blood vessel lining) cells. A week later, the incubated artificial apparatus joined with the cells to create a hierarchical structure just like the human blood vessel tree. 

While previous studies in this field used animal-borne collagen, the Technion team used engineered tobacco plants created by the Israeli company CollPlant.

The mesh was transplanted into a study rat and attached to the main artery in its leg. The blood through the artery spread through the network exactly as it would within the body, carrying oxygen and nutrients to the distant parts of the implanted tissue, and without any leaks.

This achievement is an important tool in the world of personalized medicine and could be a huge leap forward in tissue engineering and treatment.

Israel’s Itamar Medical, a medtech firm that produces devices to aid the diagnosis of sleep disorders, announced on Monday that it has signed a deal to be acquired by Zoll Medical for a total value of about $538 million.

Zoll Medical will acquire all outstanding shares of Itamar Medical for $31 per ADS (American Depository Share,) or $1.03 (equivalent to approximately NIS 3.31) per ordinary share, in cash. The offer of $31 per ADS in cash represents a 50.2 percent premium over the price of Itamar Medical’s ADS on Nasdaq this past Friday.

Since news of the acquisition broke, Itamar Medical’s stockhas has surged, spiking more than 43 percent in pre-market session.

Zoll Medical is an international medical devices manufacturer that develops products and software solutions focused on improving outcomes with novel resuscitation and acute critical care.

US sleep apnea diagnostic and treatment firm Lofta partnered with Itamar Medical to integrate the company’s diagnostic tool into its process. 

Founded in 1997 by Giora Yaron, now , Itamar Medical is focused on the development and commercialization of non-invasive medical devices and solutions to aid the diagnostics of respiratory sleep disorders.

Itamar Medical developed the WatchPAT Home Sleep Apnea Device, a sleep diagnosis program for patients and healthcare professionals. The company’s WatchPAT One device is cleared by the FDA and is recognized as a safe and effective method for home-based testing for sleep apnea.

 “The integration of Itamar’s WatchPAT technology and Digital Health solution for sleep apnea with Zoll Medical’s commercial footprint will accelerate our mission of advancing home sleep medicine to benefit the population of undiagnosed and untreated patients,” said Gilad Glick, president and Chief Executive Officer of Itamar Medical.

“Zoll Medical is committed to improving outcomes for underserved patients suffering from serious cardiopulmonary conditions,” said Jon Rennert, CEO of Zoll Medical. “It is currently estimated that 60% of cardiovascular patients suffer from some form of sleep apnea, and the majority of these patients go undiagnosed. The combination of ZOLL Medical and Itamar Medical will help more patients receive diagnosis and treatment for sleep-disordered breathing. We look forward to helping strengthen the collaboration between the worlds of cardiology and sleep medicine.”

Zoll Medical expects the acquisition to close by the end of 2021, subject to approval by the shareholders of Itamar Medical, regulatory approvals, and other customary closing conditions.

Sleep diagnostics at home

While most of Itamar Medical’s diagnostic devices were used by cardiologists and other specialists in sleep laboratories, the onset of the COVID-19 pandemic meant that the company’s emphasis shifted to home diagnostic kits. Toward the start of the pandemic when little was known about who it predominantly affected and why, patients suffering from all kinds of ailments – including sleep apnea – would be reticent about going to hospitals to fulfil appointments. Meanwhile, the stresses of working from home, potential loss of income and the need to homeschool children, likely increased the onset of sleep apnea, requiring an at-home solution.

The company’s revolutionary WatchPAT system, an easy-to-use, accurate, Home Sleep Apnea Test (HSAT) and sleep study device continues to remain reliable for this very reason. The WatchPAT was designed with patient use in mind for “in-home” sleep apnea testing in the comfort of one’s own bedroom, the company has said. This environment is more representative of one’s personal sleep habits.

Screenshot of the WatchPAT One, Itamar Medical’s disposable home sleep apnea test product.

The WatchPAT system attaches to a user’s index finger, chest and wrist to record vital measurements that are used to identify events of sleep apnea. It measures peripheral arterial (PAT) signal, heart rate, oximetry (a non-invasive way of monitoring a person’s oxygen saturation) , actigraphy (a non-invasive method of monitoring human rest/activity cycles), body position, snoring and chest motion.

The device is connected to the smartphone. Prior to sleep, patients can pair the wearable device to their phone. A smartphone app transmits the WatchPAT One’s data from seven channels to the cloud. Once the study is compelted, data can be sent to a clinician for review.

One of the most unique aspects of the device is that it is disposable. That means once a patient has slept with the device, they can dispose of it rather than needing to send it back or manually download data.

In 2016, Itamar Medical received FDA clearance to expand the medical indication of WatchPAT for sleep apnea diagnosis. Under that approval, the use of WatchPAT in the USA was permitted from the age of 12, expanding the previous indication for ages 17 and older.

At the time – and the problem could be increasingly acute now – the incidence of sleep apnea in adolescents reached alarming rates. It was attributed, among other comorbidities such as the increase of obesity in this age group. Additional factors could also include Attention Deficit Hyperactivity Disorder (ADHD), in which patients would likely not receive the appropriate medical care as long as the underlying sleep apnea remained undiagnosed and untreated.

The sleep apnea market is a growing one, predicted to expand to some $9.9 billion by 2026. Indeed, the highest compound annual growth rate is expected to occur in the home-based individuals’ segment, in part driven by an increasing personal awareness of the health benefits associated with resolving sleep apnea issues.

Study of 11,000 infected adults during the Delta wave in Israel sees vaccine’s protection disappearing at six months and restored by third dose.

An Israeli study has found that the two-dose Pfizer/BioNTech vaccine against Covid-19 is initially effective in reducing the viral load of breakthrough infections — even with the Delta variant of the SARS-CoV-2 coronavirus.

The lower the viral load, the lower the chance of transmitting the virus and developing symptoms.

But after analyzing viral loads of over 11,000 infected adults during the summer Delta-dominant wave in Israel, the researchers saw the vaccine’s protection starts declining two months after the second dose and disappears by about six months.

“Encouragingly, we find that this diminishing vaccine effectiveness on breakthrough infection viral loads is restored following the booster vaccine,” the researchers write.

In fact, the third vaccination caused a more than four-fold reduction in viral loads.

The study results, posted September 1 on the medRxiv website prior to peer review, was carried out by a multidisciplinary team of researchers from the Technion-Israel Institute of Technology, Tel Aviv University and Maccabi Health Services.

The findings seem to support Israel’s unprecedented decision, in July, to begin offering booster shots to citizens at least five months past their second vaccine dose.

As of now, more than 3 million Israelis have gotten that third shot. A recent Israeli study in the New England Journal of Medicine confirms the effectiveness of the booster at preventing both infection and severe illness.

How long the booster’s protection remains effective is a question that can be answered only by further research.

The study was supported by a grant from the Israel Science Foundation as part of the KillCorona-Curbing Coronavirus Research Program.

SOURCE

COVID Booster Shot Reduces Viral Load, Limits Transmission, Israeli Study Finds

The study, which has yet to be peer-reviewed, analyzed samples from 11,000 people infected with the COVID delta variant in Israel and found booster shots reduced viral loads by a factor of four

A vaccination center in Jerusalem, last monthCredit: Emil Salman

A booster shot of Pfizer’s coronavirus vaccine significantly reduces viral load in patients infected with the delta variant, and therefore reduces the chances of transmission, a new Israeli study has found.

The study was conducted jointly by the Technion – Israel Institute of Technology and KSM – the Maccabi Research and Innovation Center. It was published on the MedRxiv website, which is for papers that haven’t yet been published in a scientific journal.

The researchers concluded that about six months after someone receives the second dose of the vaccine, its effectiveness at reducing viral load dissipates. But a third dose slashes viral loads by a factor of four, thereby restoring the vaccine’s effectiveness to what it was shortly after the second dose was administered.

The researchers analyzed 11,000 PCR swab tests conducted by the Maccabi health maintenance organization on patients who had been infected with the delta variant. These patients were divided into three groups – people who were never vaccinated, people who were infected within six months of getting the second dose and people who were infected after getting the booster shot.

“What we discovered is that the vaccine’s effectiveness with respect to viral load gradually wanes over time, until after six months, [viral load] reaches a high level, similar to that of an unvaccinated person,” said Matan Levine-Tiefenbrun, a doctoral student at Tel Aviv University who is also affiliated with the Technion and was the lead researcher. “Nevertheless, we discovered that the booster shot brings the viral load back down by a factor of four, to what it was before.”

A medical worker prepares a coronavirus vaccine dose in Jerusalem, last month.Credit: Ohad Zwigenberg

The PCR test enables researchers to assess the size of the viral load based on how many times sequences of the virus’ DNA needed to be replicated to produce a result. The greater the number of replications required, the lower the initial viral load was. Analyzing large numbers of such tests enables researchers to identify broad trends – in this case, the relationship between and how long it has been since the patient’s last vaccine dose.

Viral load is a significant factor in both the likelihood of developing symptomatic illness and the likelihood of transmission, since someone who is coughing and sneezing will spread the virus more than an asymptomatic patient would.

The study found that people infected less than two months after their second dose had lower viral loads than unvaccinated people. Consequently, they also had milder symptoms and were less infectious.

But after those first two months, the researchers said, immune protection gradually begins waning and viral loads rise. This process peaks after about six months.

Aside from Levine-Tiefenbrun, the other researchers were Prof. Roy Kishony and Dr. Idan Yellin, both of the Techion, and a group of researchers from KSM led by Dr. Tal Patalon.

In March, this same group published an article in the journal Nature Medicine showing that Pfizer’s coronavirus vaccine starts significantly reducing viral load as early as 12 days after the first dose. But that study involved the alpha variant, also known as the U.K. variant, rather than delta.

“We’re seeing that the vaccines are also effective in the fourth wave, against the delta variant,” Kishony said. “The effectiveness seems very similar to what it was against the British variant after receipt of the first two doses.”

However, he added, the results of the earlier study can’t be compared directly to the results of the new study, “because the British variant has been pushed aside and disappeared.”

The new study bolsters the data from another Israeli study, this one peer-reviewed, that was published last week in the New England Journal of Medicine, and which FDA experts made use of in discussing whether to recommend booster shots in the United States. That study found that the vaccine’s effectiveness in preventing transmission declines significantly after six months, but even then, vaccinated people are roughly 50 percent less likely to infect others than unvaccinated people.

After the booster, however, Pfizer’s vaccine is 95 percent effective in preventing transmission, that study said.

The risk of severe disease dropped by factor of almost 20 in people over 60—but some dispute the benefits of offering an additional dose

Older Israelis who have received a third dose of a COVID-19 vaccine are much less likely to test positive for SARS-CoV-2 or to develop severe COVID-19 than are those who have had only two jabs, according to a highly anticipated study published on 15 September.

The standard regimen for messenger RNA-based COVID-19 vaccines is two doses, but some governments, including Israel’s, have started administering third ‘booster’ shots. The latest study evaluated 1.1 million Israelis over the age of 60 who had received their first two doses at least five months earlier. Twelve or more days after receiving a third jab, participants were about 19.5 times less likely to have severe COVID-19 than were people in the same age group who had received only two jabs and were studied during a similar time period.

“It’s a very strong result,” says Susan Ellenberg, a biostatistician at the University of Pennsylvania in Philadelphia, who adds that the data might be the most robust she has seen in favour of boosters. But potential biases in the data leave some scientists unconvinced that boosters are necessary for all populations—and the data do not dispel concerns about vaccine equity when billions of people are still waiting for their first jab.

Israel, which got an early start on vaccinating its population, began offering third doses of the Pfizer–BioNTech vaccine in July, to people aged 60 and over. The latest analysis links the third jab not only with a significant reduction in severe COVID-19, but also with an 11.3-fold reduction in SARS-CoV-2 infections.

But Ellie Murray, an epidemiologist at Boston University in Massachusetts, cautions that observational studies such as this analysis can contain biases that are difficult to identify and account for. For example, people who sign up to get a booster might have a different risk of COVID-19, or behave differently, from people who do not get a third jab.

Ellenberg says that the authors try to address some of these potential biases. Even if not all biases have been eliminated, she says, the magnitude of the effect suggests that the booster offers some protection, at least in the short term. The authors of the study could not be reached before publication.

GLOBAL RAMIFICATIONS

The findings come as a slew of wealthier nations consider offering booster shots. An advisory committee of the US Food and Drug Administration (FDA) will discuss Pfizer’s application to supply boosters in the United States on 17 September. One of the authors of the Israeli study is slated to present data to the committee.

Murray argues that the potential biases in the data, and insufficient evidence for waning immunity after vaccination, mean that the latest findings don’t indicate a “strong need” for boosters. “From a public-health perspective, it’s way, way more impactful to get more people vaccinated than it is to boost the vaccine effectiveness by a few percentage points in those who have already gotten the vaccine,” she says.

Murray is not alone in finding the Israeli results insufficient to justify boosters. A review published on 13 September by a team that includes two high-ranking FDA scientists cites a preprint of the study and notes that the short-term protective effect documented in Israel “would not necessarily imply worthwhile long-term benefit”.

Dvir Aran, a biomedical data scientist at Technion—Israel Institute of Technology in Haifa, says that Israel has deployed boosters to stop transmission in younger people and to prevent severe disease and deaths in older people.

“Is it the best way? Whether a two-week lockdown would have given a similar result, I can’t answer that question,” he says. “But it’s an interesting approach, trying to stop an outbreak like this with vaccinations.”

SOURCE

Study: COVID booster recipients 20 times more protected against serious illness

As US officials set to mull okaying Pfizer’s 3rd dose, data from a million Israelis shows it boosts protection from infection tenfold compared with eligible people who got 2 shots

A syringe is prepared with the Pfizer COVID-19 vaccine at a clinic at the Reading Area Community College in Reading, Pennsylvania, September 14, 2021. (AP/ Matt Rourke)

A new study conducted in Israel shows that individuals given a third COVID-19 vaccine dose are nearly twenty times more protected against serious illness and more than ten times more protected against infection, compared with those who received their second dose at least five months previously.

The research, published on Wednesday by The New England Journal of Medicine, showed that 12 days after receiving a booster shot of a Pfizer-BioNTech COVID-19 vaccine, the chance of infection was 11.3 times less than among those eligible for a third shot but didn’t get one.

And the chance of suffering serious illness as a result of COVID-19 among those who had received a booster shot was 19.5 times less, the research said.

The study was conducted by researchers from the Weizmann Institute of Science, the Ministry of Health, the Technion, the Hebrew University, Sheba Medical Center, and the KI Institute.

Even with a more conservative analysis, which attempted to control possible behavioral differences between the two groups, the infection rate was at least 5 times lower in the group that had received the booster shot, the Health Ministry said in a statement.

The research includes data from more than 1 million Israelis. Among those who hadn’t received a booster shot despite being eligible, there were 4,439 confirmed infections, including 294 serious patients. Among those who received the booster at least 12 days previously, there were 934 infections including 29 serious cases.

An Israeli woman receives a third dose of the COVID-19 vaccine at a Clalit clinic on September 1, 2021 in Jerusalem. (Olivier Fitoussi/Flash90)

The Israeli data could not say how long the boosted protection lasts.

But a separate study conducted at Sheba Medical Center in Ramat Gan, outside Tel Aviv, has stoked optimism as to the amount of time for which the booster shot retains its protection.

The study found that the antibody levels a week after the third COVID-19 vaccine dose was administered to its staff were ten times higher than their levels a week after the second dose was administered.

Israel — the first country to officially offer a third dose — began its COVID-19 booster campaign on August 1, initially rolling it out to those over the age of 60. It then gradually dropped the eligibility age, eventually expanding it to everyone aged 12 and up who received the second shot at least five months ago.

As of Thursday, nearly 3 million Israelis had received their third dose.

Meanwhile in the US, influential government advisers will debate Friday if there’s enough proof that a booster dose of Pfizer’s COVID-19 vaccine is safe and effective — the first step toward deciding which Americans need one and when.

The Food and Drug Administration on Wednesday posted much of the evidence its advisory panel will consider.

Pfizer’s argument is that while protection against severe disease is holding strong in the US, immunity against milder infection wanes somewhere around six to eight months after the second dose.

More important, Pfizer said, those antibodies appear strong enough to handle the extra-contagious Delta variant that is surging around the world.

A man receives his third dose of the COVID-19 vaccine at a temporary health care center in Jerusalem, on August 29, 2021. (Yonatan Sindel/Flash90)

To bolster its case, Pfizer pointed the FDA to the new data from Israel.

Pfizer said the data published on Thursday translates to “roughly 95% effectiveness” against Delta — comparable to the protection seen shortly after the vaccine’s rollout earlier in the year.

In Israel, the R-value — the reproduction rate of the virus measuring the average number of people each positive person infects — rose to 1.14 on Thursday, after it had hit a 4-month low of 0.81 just days earlier.

Any number over 1 indicates infections are rising, while a figure below that signals that an outbreak is abating.

There were 8,601 new COVID-19 cases diagnosed on Wednesday, according to the Health Ministry.

Of the 83,704 active cases, 654 are in serious condition. Since the start of the pandemic last year, 7,465 people have died of COVID-19 complications in Israel.