And why H2Pro, set up by Technion Professors is the Israeli startup we all need to know about!

We are living through an exciting part of the global journey to reducing carbon emissions, thanks to a transition to clean energy that’s gaining serious momentum.

Between the ongoing economic recovery from Covid-19 and the war in Ukraine – highlighting the need for the Western world to become energy independent – investments in the global renewable energy market are expected to increase significantly. 

By 2040, around 10% of the world’s primary energy demand could be replaced by hydrogen, while the global hydrogen market is expected to more than double by 2050.

Israel, as one example, is currently aiming for 30% of its energy to be renewable by 2030 – a considerable increase on the 2020 total of 7%.

But its success relies on many factors, such as creating more storage, reducing the reliance on fossil fuels and making energy systems more flexible and resilient.

As the most abundant element in the universe, hydrogen is a portable, scalable fuel that can serve as a lifeline to sectors that are difficult and costly to electrify, such as long-haul trucking, maritime shipping and air travel.

As a zero-carbon duel, it is also an environmentally-friendly option for high-heat industrial processes, such as steel and cement.

The one to watch out for

While others are developing in the market, H2Pro is at the forefront of making these targets a reality, thanks to its revolutionary method for efficiently splitting water into its two components of hydrogen and oxygen.

Using electricity, the elements are generated separately, unlike conventional electrolysis, enabling a 95% system efficiency.

Founded by Professors Gideon Grader and Avner Rothschild and Drs. Hen Dotan and Avigail Landman of the Grand Technion Energy Programme in 2019, the company, which counts Bill Gates as an investor, has laid the cornerstone of its first production facility, which, when completed, will produce affordable green renewable energy at scale.

Technion, Israel’s Institute of Technology is the oldest university in the country and one of the leading universities in the world.  

Its Faculty of Biotechnology and Food Engineering is a unique department where expertise from many disciplines comes together.

Israel is a global centre of food and agri-tech, producing remarkable innovations, and attracting astonishing levels of investment.

But, like anywhere else in the world, there are problems; food waste, overfishing, unsustainable practices, feeding a growing population. Israel is facing all of the above and the issues are taxing its brightest minds.

The Food Matters Live Podcast has looked at innovation in Israel before, but in this episode we are going to get a unique insight into one of the world’s leading research centres.

The Faculty of Biotechnology and Food Engineering is led by Professor Marcelle Machluf, a remarkable woman who was named Lady Globe Magazine’s ‘Woman of the Year’ in 2018.

Her work has been included in the Israel Ministry of Science and Technology’s list of ‘Israel’s 60 Most Impactful Developments’.

During this episode of the Food Matters Live Podcast, we learn about the new Carasso FoodTech Innovation Center being built at Technion.

It has an R&D centre, packaging laboratory, kitchens, tasting, and evaluation units.

Professor Machluf says: “It’s not enough to just sit in the classroom. Our students need the right equipment to develop their ideas and they need to be prepared for whatever the future holds.”

Listen to the full episode to hear her views on the importance of building relationships to drive innovation, learn more about the work being done at Technion, and how the institute is going about developing a centre for ideas that haven’t yet been born.

Professor Marcelle Machluf, Dean of the Faculty of Biotechnology and Food Engineering, Technion

Professor Marcelle Machluf is renowned for her cutting-edge cancer and drug delivery research, and her work in tissue regeneration.

She is head of the Technion’s graduate Interdisciplinary Program in Biotechnology, a member of the Affiliate Engineering Faculty of the Technion Integrated Cancer Center, and former deputy executive vice president for research for the Technion’s Pre-Clinical Research Authority. She also works closely with the Russell Berrie Nanotechnology Institute.

Professor Machluf is developing a targeted drug delivery system using modified stem cells called Nano-Ghosts to home in on tumours, unleashing its therapeutic load at the cancer site.

She is also developing scaffolding for tissue engineering of the pancreas, heart, and blood vessels, and developing carriers for cell delivery with applications for treating diabetes and more.

She has a laboratory at Nanyang Technological University of Singapore, where she is working on a leading tissue regenerative project.

Professor Machluf has authored book chapters and more than 80 peer-reviewed journal papers in leading journals. Her work has been cited more than 2,800 times. She has six national patents and two approved international patents in the fields of drug delivery and tissue engineering.

She is the recipient of many honours including the Alon Award for excellence in science, the Gutwirth Award for achievements in gene therapy, the Hershel Rich Technion Innovation Award, and the Juludan Research Prize for outstanding research.

This Israeli startup finds key ingredients in nature that are also found in breast milk

The ingredients that make mother’s milk the best possible thing for a baby will now be available for grownups.

Israeli food tech startup Maolac uses an algorithm that matches the key proteins in breast milk with alternative sources found in mushrooms, algae, and plants.

Everything that baby benefits from — protection against illness, anti-inflammatory qualities, and nutrition — will be utilized in a superfood for adults, Maya Ashkenazi Otmazgin, and biomedical engineer and the CEO for Maolac, tells NoCamels.

“We created an algorithm that can actually look at all the proteins inside breast milk and mix and match the key proteins responsible for different functionalities and then find them in alternative sources in nature, like mushrooms, algae, and plants,” she says.

Maolac is also said to be the first company in the world to identify and extract functional proteins from bovine colostrum, a nutrient-rich milky fluid that comes from the udder of cows in the first four to five days after giving birth, which is 95 percent equivalent to those found in breast milk, according to the firm.

Bovine colostrum produced by baby calves should not go to waste. Image by Erdenebayar Bayansan from Pixabay

Extra milk from calves– as much as 20 liters per cow — is thrown away after getting a certain amount from each one. “If we look for it, we will see 5 billion liters of bovine colostrum that the dairy industry does not use,” Ashkenazi Otmazgin says.

“The idea of transforming the first, nutrient-rich milk of cows that have just given birth into a source for human protein is a stroke of pure genius. Billions of liters of bovine colostrum are discarded each year. Maolac takes this waste and creates a product of huge potential benefit to millions at a time when the world is desperately searching for new sustainable sources of protein. The company is a perfect example of the circular economy in action,” said Jon Medved, CEO of OurCrowd, which has invested in the company.

Nursing vision 

Otmagazin had the idea to create a superfood using nutritional ingredients found in breast milk while experiencing “the magic” of nursing her first child. She realized she wanted to harness the benefits of that breast milk for adults.

“I told myself – this is the ultimate superfood for mammals,” she says in a conversation with NoCamels during a short break between a hectic day of meetings. “There are different functionalities that breast milk can provide for a small human being and I realized we could leverage all the goodness to create something new inspired by a formulation that created the human species and actually brought us to where we are,” she says.

In 2018, Ashkenazi Otmazgin joined forces with Eli Lerner and immunity expert Dr. Ariel Orbach to form a food tech startup. The company just raised a $3.2 million seed funding round led by active crowdfunding platform OurCrowd with participation from The Kitchen FoodTech Hub founded by the Strauss Group, The Food Tech Lab, VentureIsrael, NEOME, and Mediterranean Towers Ventures.

Studies have shown that there are numerous benefits to breastfeeding a baby that both protect against illness and positively impact health and child development. According to the Cleveland Clinic in Cleveland, Ohio, USA, breast milk provides abundant and easily absorbed nutritional components, antioxidants, enzymes, immune properties, and live antibodies from the mother that attack germs and protect the baby from illness.

Maolac superfood products. Courtesy.

Maolac’s technology relies on a bio-convergence platform for the discovery of proteins based on machine learning and natural language processing search algorithms. The company identified more than 1,5000 known bio-active proteins in human breast milk and over 400 homolog proteins in bovine colostrum, and have since created thousands of human functional milk protein mixtures using similar ingredients found in plants and mushrooms, and other sources found in nature.

Ashkenazi Otmazgin stresses that the alternative sources must come from nature. “We don’t make them in a lab or genetically modify our mixtures.”

Maolac’s active ingredients work like breast milk to directly target specific body function, traveling through the bloodstream or gut to produce higher overall efficacy at lower dosages, a statement from Maolac said.

One of the ingredients has anti-inflammatory properties and is part of the first Maolac product line for humans. It will target athletes to reduce muscle strain and improve recovery time. The product will also target the elderly to support living and improved mobility. It will form the basis for the next generation of gut health solutions for humans and pets to help prevent severe cases of gut inflammation.

The second ingredient will be a part of products creating the next generation of probiotics, according to Otmazgin. It will contribute to a better digestive system to reduce inconvenience due to stress in the gut, irritable bowel syndrome (IBS), or other conditions

Maolac will use the seed funding they just raised to build a state-of-the-art facility that will feature small-scale production capabilities. The facility will also be able to create analytics and samples for customers and clinical trials.

The Maolac team. Maya Otmazgin is in the center. Courtesy.

Ashkenazi Otmazgin tells NoCamels that the startup is in advanced discussions on joint development agreements with several leading Israeli companies in the food and supplements markets. It is also in talks with several of the world’s leading dairy protein producers and global dairy, ingredient, and supplement companies.

“We have several contracts on the table with potential global manufacturers that will produce for us. Our intention is to go global,” says Ashkenazi Otmazgin, citing both the US and Europe.

“We want to be the next generation of smart ingredient companies that create precision proteins for the food supplements and cosmetics industries with a portfolio of products with different functionalities,” says Ashkenazi Ashkenazi Otmazgin, “We want to bring active ingredients in small doses that won’t have an influence on taste, texture, or colors of existing food products, so people will love to consume those products.”

Ashkenazi Otmazgin also admits that in the future, the company will go to other markets, like the baby formula market. “Not full formula, but functional ingredients for the industry,” she adds.

For now, though, the focus is breast milk.

“There are so many companies that work in the alternative space and don’t look at breast milk — there is something quite repulsive when you talk about it. But adults can take real advantage of it,” she says.

Chief mobility officer of Michigan, the heart of the US automotive industry, says Israeli companies are reinventing transportation infrastructure.

“When we look outside of the United States for new technology, especially for mobility technology, there’s really only two places that have the technology applicable to the use cases that we have here,” says Trevor Pawl, chief mobility officer for the State of Michigan.

“The first is Europe and the second is Israel. It’s remarkable that Israel is the second market because of how small the country is population wise and geography wise,” Pawl tells ISRAEL21c after speaking at the EcoMotion international mobility conference in Tel Aviv.

Considering that the Michigan city of Detroit is the epicenter of America’s automotive scene – this is the birthplace of vehicle manufacturing as well as infrastructure such as traffic lights and lane markings — it’s significant that the state is looking to Israel for innovation in that sector.

While Israelis don’t have a history of car manufacturing, says Pawl, “they have a history of software engineering.”

And that’s key, he says, because “the automotive industry is being driven by four foundational platforms: autonomous technology, electric technology, shared technology and connected technology.”

All of which are Israeli areas of expertise.

In-road charging

Trevor Pawl, chief mobility officer for the State of Michigan. Photo courtesy of Michigan Economic Development Corporation

One joint project is with Israel-based Electreon to build America’s first wireless charging road for electric vehicles.

“We’re seeing Israeli companies come in and help us solve problems but also help us realize that the horizon for future technology being integrated into the real world isn’t as far off as we think. And the perfect example of that is Electreon,” says Pawl.

“Once we saw other Electreon deployments in Sweden and in Israel, we knew that Electreon was a company that we wanted to work with in Michigan,” he says.

Photo courtesy of Electreon

“As transportation infrastructure is being reinvented and we have money from the federal government to reinvent it, we are looking at what else could we do, aside from creating charging stations, to help fleet operators transition from diesel to electric. And one of those things is not having to wait half an hour at a charging station,” Pawl explains.

“We believe that Electreon’s technology will allow for continuous loops for things like delivery vans and transit vehicles. We’re deploying the first mile of road that charges a vehicle as it’s in motion, right here in Detroit, to go live next year. I’m almost certain that it’s not going to be the last mile.”

Kinetic charging

Michigan may also do business with ZOOZ Power (formerly Chakratec), an Israeli company whose Kinetic Power Booster (KPB) based on innovative flywheel technology can provide ultra-fast charging networks for electric vehicles.

Photo courtesy of ZOOZ

“As we build out our EV charging network in Michigan, where much of the population is in the lower part of the state, we have some unique challenges with the grid,” says Pawl.

“This company has a contraption that is able to create its own kinetic energy, then make up the difference in that portion of the grid to ensure that a charging station, or two or three charging stations, are able to function in areas where maybe they wouldn’t otherwise.”

Pawl said that the state is looking into Israeli solutions for maritime mobility for recreation and industry as well, given that transportation on the Great Lakes is important to Michigan’s economy.

Michigan Israel Business Accelerator

Pawl emphasizes that Michigan is seeking Israel innovation in a variety of verticals, such as security, consumer goods and water and agricultural technologies, that generate local jobs.

The Michigan Israel Business Accelerator organizes trade missions a couple of times a year to facilitate matches between Michigan’s needs and Israel’s capabilities.

“Obviously, I only get involved in the transportation mobility side of it,” says Pawl, “and it was important that we brought some of the Michigan Department of Transportation lead consultants on innovative projects — whether for bridges or for the future of automated payments — to EcoMotion to see what was going on in real time with a clear focus on the market.”

The accelerator, he continues, “has boots on the ground in Israel, allowing us to have a presence at cool events such as EcoMotion and making sure that we’re meeting with high-level officials, going into the command centers for certain highways, and meeting with people that are trying to solve the micro-mobility congestion issue in cities.”

Looking at the direction in which the automotive industry and smart cities are moving, Pawl says, “there’s more synergy than you would immediately think. You can’t afford not to be having a constant dialogue with leaders in Israel’s public sector and private sector.”

Mobility and smart cities

Among the Israeli technologies piquing interest are data-driven digitized garbage collection from GreenQ, road noise cancellation technology from Silentium and AlgoShield, a real-time early warning lithium battery hazard detection and explosion-prevention solution.

“We’re getting a lot of questions from cities like, ‘Okay, if we’re going to be aggressively rolling out charging stations and electric vehicles on the road — General Motors is flipping over to all electric by 2035 — how are we going to handle the worst cases, such as battery fires? How do we prepare for the future?’

“Aside from making sure firefighters have the right technology and knowledge to work with a battery fire, the vehicle is going to have to take a major leap forward,” says Pawl.

Photo courtesy of EcoMotion

“If you’re focused on trying to make sure that America not just leads the world in producing technologies and vehicles but also that it’s simply one of the best places to get around, I think Israel can help us find the way.”

Testing ground for Israeli technologies

Trevor Pawl speaking at EcoMotion 2022. Photo courtesy of Michigan Israel Business Accelerator

In his speech at EcoMotion, Pawl said that Michigan, which borders Canada, is a valuable testing site for Israeli businesses entering the North American market.

“We understand that there’s other markets like Silicon Valley, and places on the East Coast that have venture capital markets, but to really prove out your technology you’re going to want to actually get it out in communities,” he explained.

“You’re going to want world-class testing sites at the earlier stage, and once you’re past that point you’re going to want to work with a government that’s willing to give you access to their infrastructure and that has regulatory policies where you can move at the speed of the market and get permits quickly.

“So while you may kick the tires at an automaker R&D lab in Silicon Valley, if you want to end up on a North American vehicle, you have to come through Detroit. And if you want to build a fleet, you’re going to have to access our supply chain,” he says, noting that Detroit houses the lion’s share of US automotive suppliers and automakers.

“This is paired with our commitment to, for instance, the Electreon project, opening up our infrastructure to help Electreon write their playbook in North America.”

Michigan also has North America’s first smart parking lab and is constructing America’s first signature EV route along Lake Michigan. The US and Canadian federal governments are seeking technologies to build better border crossings, Pawl says.

In addition, Michigan is building a 40-mile autonomous vehicle lane between Detroit and Ann Arbor, “which will be essentially the road of the future and provide hundreds of other opportunities for Israeli companies to insert their technology.”

Wireless V2X technology developed in Israel alerts motorists and two-wheel vehicle riders to each other’s presence.

An affordable device that alerts cyclists and scooter riders to the danger of unseen motorists could prevent many accidents globally, says Israel-based Autotalks.

The company uses V2X (vehicle-to-everything) technology to connect two-wheelers with other road users and warn them of each other’s presence.

The device, called ZooZ 2, gives a visual warning to two-wheel riders if a vehicle is approaching an intersection and could hit them. It also alerts them to drivers indicating a right turn who may be in their blind spot, and cars that jump a red light.

Drivers who have the device are likewise alerted to the two-wheeler. ZooZ 2 uses wireless technology so it can reliably detect two-wheelers even if the line of sight is obstructed.

The company says three quarters of bike and scooter accidents are caused by drivers failing to notice the two-wheeler – and it’s almost always the two-wheeler that comes off worse.

“Autotalks regards all road accidents as preventable, and those accidents involving bikes and scooters deserve special attention,” said founder and CTO Onn Haran.

“We’re committed to making our new micromobility safety device available immediately in order to save the lives of two-wheeler riders around the globe.”

Cyclists and scooter riders fit the device to their handlebars at a cost of $50 to $100 or it can come integrated on high-end models. ZooZ 2 currently communicates only with the 10% of cars that are V2X-enabled, but the technology is to be included in most new vehicles launched in 2025/26.

The first version of the ZooZ micromobility device was launched in September 2021. Autotalks says the updated version is undergoing validation tests by four manufacturers of bikes or their components, and by two vehicle manufacturers.

Autotalks showcased the ZooZ 2 device last week at the Velo-City Conference, the world cycling summit, in Ljubljana, Slovenia.

The plug-and-play device uses software provided by US-based V2X specialist Commsignia and has been tested successfully by the European consortium Project SECUR (Safety Enhancement through Connected Users on the Road).

Autotalks has already produced similar technology for motorcycles and says the first motorcycle manufacturer will incorporate it into mass-produced models in Europe in 2024.

Israeli researchers from the Technion are developing a solution that addresses the shortages in seasonal harvesters: robots that pick fruit for us.

Throughout history, early summer has often signaled the time to harvest. Harvesting, of course, has evolved considerably. As opposed to ancient times when mobilizing the whole community was necessary to fully harvest grain, there are sophisticated machines nowadays run by just a few individual operators that quickly navigate through fields and efficiently process many acres at a time.

However, in the case of fruits, there is still a need for a great deal of manual labor throughout the harvesting process today, but workers are in short supply. The farming labor and resource shortage is reported in many countries across the world including the United States, Australia, the United Kingdom, Vietnam and Brazil. Unharvested produce leads to a loss of food quality and spurs enormous economic losses, a fact that will become more evident and problematic as the world population continues to increase. 

In a new Israeli study, researchers from the Technion developed a ground mobile robot that could drastically advance fruit agriculture and harvesting. The robot, whose development was led by Associate Professor Amir Degani from the Technion’s Environmental, Water, and Agriculture Engineering Department, will have the capability to use one or multiple small-sized drones to perform the operations required in orchards much more accurately and cheaper than the methods used by farmers today.

The study was recently presented at the “Water and Environmental Engineering in the Face of Climate Change” conference of the Environmental, Water, and Agriculture Engineering Department at the Technion’s Faculty of Civil and Environmental Engineering. 

The Need for Better Fruit-Picking Robotics

The gap between the number of seasonal laborers and the volume of work is expected to significantly expand as the world population continues to grow. By 2050 there are expected to be more than 9 billion people in the world, and in order to feed them all it will be necessary to increase the volume of food production anywhere from 35-60 percent (unless the whole world switches to a plant-based diet). 

One might expect though that with such a highly populated world there would be no shortage of working personnel, but sadly this is not the case.

“People have been moving from villages to cities for decades – and fewer people want to engage in manual labor,” Degani explains. “It’s seen in construction and agriculture, and it happens everywhere – including in countries with very large populations, like India and China. In India, for example, harvesting coconut is a very important task – but fewer and fewer people want to work in that field.”

According to him, the problem also exists in Israel. “As in many Western countries, there are quite a few years in Israel where apples fall to the ground because no one is there to pick them in time.”

Degani believes the solution to these problems lies in robots that know how to pick fruits. 

“Just as automation has solved many of the problems that plagued field crops, like using machines such as combine harvesters, once we adapt this strategy to plantations farmers will be able to better streamline and reduce the uncertainty that currently surrounds the acquisition of skilled seasonal labor for specific times of the year,” he says.

It is important to note that automating harvests should be approached differently than those used for field crops, which involve rough, large, and overly expensive machines. 

“In field crops, massive harvesting is carried out all over the area––usually indiscriminately,” says Degani. “Picking edible fruit should be gentle and selective. The fruits should be picked one by one and handled carefully.”

Interestingly, he claims that the robotic arms currently used in factories, which have a large range of motion and accurate precision capabilities that humans can only dream of, are not suitable for the task. 

“Although these robotic arms know how to perform a pre-planned operation, their sensing and decision making capabilities are limited and are not suitable for agriculture,” he says. “Agriculture is a more difficult world. Agriculture takes place in an uncertain environment with fluctuating changes in light and outdoor conditions, so the robot must have complex sensing and decision making capabilities.” According to him, the robot should not be too expensive of an alternative because otherwise many farmers will not be able to afford it.

Call in Air Support

Degani and his team began to approach the challenge of the harvesting robot’s development by first addressing its maneuverability in the orchard, a task more complicated than it sounds.

“In order for the robot to patrol and weave through all the trees and detect pests or ripe apples, for example, it must know where it exactly is,” Degani explains. The orchard environment is relatively homogeneous from a ground point of view, with most of the trees looking about the same and the GPS reception not being particularly reliable.

This obstacle gave rise to the idea of establishing a connection between a ground mobile robot and a drone. The researchers found that when utilizing the perspective of a low-flying drone, the top-view observation of the orchard provides a unique signature of every tree formed by the shape of its canopy. The first study on the subject was published in the robotics and automation section of the IEEE magazine. 

Currently, researchers are working on additional ways in which the farming robot can use small drones to perform the operations required for harvesting orchards. First, they demonstrated that a drone could hover around a tree, creating a detailed three-dimensional image of each of the trees in the area. These are needed to make the harvesting process more efficient and reflect more modern model of precision agriculture.

“The meaning of ‘precision agriculture’ is that instead of making decisions on issues relating to things like fertilization, irrigation, thinning, pest management, or harvesting at the entire field level, we will look at the agricultural plot at a higher resolution and make such decisions down to the individual tree level,” explains Degani.

This will make it possible to increase the volume of produce, by providing the best conditions for each individual tree, and beyond that, save the use of resources such as water, fertilizer, and potentially dangerous pesticides.

Degani believes the solution lies in the capabilities of a ground mobile robot that knows how to navigate around the wood, perform precise mechanical operations, and even pollinate flowers––another separate project currently under development in the laboratory.

A Shift From Human to Robot?

Today, Degani’s studies are in the prototype stage, and they demonstrate possibilities for future development. In any case, there are already several automation attempts in the fruit harvesting industry represented by Israeli companies such as FFRobotics, a robot equipped with the ability to emulate human hand-picking, and Tevel Aerobotics Technologies, which developed a flying harvester that is scheduled to enter its pilot phase in the coming year.

Beyond that, not only is the identity of the harvester expected to shift from human to robot – but the structure of the orchard itself is also speculated to change.

“The way we engineer and grow trees will change, and they will be designed in a way that is right for robotic harvesting,” Degani explains. “Even today you can see in the world apple orchards that look almost like a two-dimensional wall on which fruit grows. This is not genetic engineering but mechanical engineering operations designed to make the orchard grow as efficiently as possible.” The new orchard structure allows for denser planting and is designed to enable easier harvesting for both humans and robots alike. Studies are currently underway to determine the most efficient configuration, in preparation for an era in which robots will enter the agricultural landscape.

In the end, according to Degani, everything is aimed at becoming more efficient simply because we have no other choice. 

“Even in modern agriculture, the farmer will be very important, but he will need much fewer working hands,” he says. “Like quite a few things, the data will be at the center, to help him make informed decisions, and the robots will carry out the tasks in the field. This is what will direct the efficiency so that we can reach a sufficient crop target that will feed all humans,” he says.

“Because there will be less land, less resources, and less manpower over time, there is a need to find a solution. Otherwise, fruits like apples will be accessible only to the very rich,” Degani concludes.

Funding will be used to support more than a dozen studies

A new university grant program in Israel with a budget of over $1 million will support researchers in their quest for new food technologies.

The ministries of Agriculture and Innovation, Science and Technology initiated the program with an emphasis on alternative proteins.

The ministries launched a call for proposals last Thursday, in collaboration with the Good Food Institute (GFI) Israel, a non-profit organization that seeks to promote research and innovation in food technology.

The food technology sector is a broad field that includes nutrition, packaging, food safety, processing systems, new ingredients and alternative proteins. These include plant-based meat, dairy and egg substitutes, dairy products, cultured meat and seafood, insect proteins, and fermentation products and processes.

Many of the technologies used in this field are based on academic research. 

The technologies of two major Israeli cultured meat companies, Aleph Farms and Future Meat, are based on bioengineering research developed by their respective co-founders, Professor Shulamit Levenberg of the Technion – the Israel Institute of Technology – and Professor Yaakov Nahmias of the Hebrew University of Jerusalem. 

Both are leading academics in the field of tissue engineering.

Ministry funding will support a dozen university studies offering science and technology solutions in the areas of cultured meat, fermentation processes and plant-based substitutes. 

These studies can be aimed at improving the final product or the production process itself, the ministries said.

What if the cracked screen of your mobile phone or the solar panels providing energy to a satellite could self-repair?

These kinds of robots and electronics are not only a matter of science fiction — where self-aware machines can heal themselves — but of real interest for scientists and technology developers. Researchers from Technion, say self-repairing electronics may be possible and have the tech to prove it.

As the use of technology intensifies, electronics that have longer life spans become more valuable and essential for critical operations. The technology we use every day — smartphones, laptops, or tablets — has a very limited life span. These short life cycles are mostly due to electronic damage and normal degradation of electronic parts, including lithium batteries. From the government to the private tech industry, electronic damage can have significant consequences. For example, a study from the Electrostatic Discharge Association estimated that industries could lose up to £4 billion per year due to electrostatic electronic damage alone. By 2022, with an ever-expanding global cloud powered by endless servers, the risks are even higher.

Smoke, fire, water, dust, corrosion, temperature variations, radiation, mechanical shock, impact, contact failure, and thermal stress … there are numerous ways in which electronics can be damaged (via LiveWire). On the other hand, other technologies like NASA space technology or commercial satellites, which cannot be accessed for maintenance or repairs, require longer life spans but still depend on electronics susceptible to damage. Self-healing electronics, while still a dream, could become the “holy tech grail.”

A research group led by Professor Yehonadav Bekenstein from the Faculty of Materials Sciences and Engineering and the Solid-State Institute at Technion was studying perovskite nanoparticles for their potential to provide a green alternative to toxic lead materials used heavily in electronics. In doing so, they found something unexpected.

The team found on a microscopic level that the nanocrystals moved a hole (damage) through the areas of a structure to self-heal. Surprised by this, the researchers drew up a code to analyze microscopic videos and understand the dynamics and movements within the crystal. The researchers realized that the damaged area, or hole, formed on the surface of the nanoparticles, then moved to energetically stable areas inside, and was finally “spontaneously ejected” out. Researchers explained that through this self-healing process, the nanocrystals essentially reverted back to being undamaged (per Technion). 

Researchers at the Technion believe that this discovery is a key step toward understanding the processes by which these nanoparticles can heal themselves. The team also thinks that perovskite nanoparticles should be used in solar panels and other electronic devices.

Netafim analysis shows corn grown with drip irrigation releases 53% fewer carbon emissions compared to flood-irrigated corn.

Corn is the third largest plant-based food source in the world and the most important crop in the United States, where 1.2 billion metric tons of corn were produced last year.

Corn is also cultivated in China, South America, India, Ukraine and across Europe, as food for both humans and livestock, as a biofuel and as a crude material for industrial purposes.

Now, results of a Life Cycle Analysis study show that the environmental impact of all those cornfields is significantly reduced by the use of drip irrigation as opposed to flood or sprinkler irrigation.

The study was conducted by EcoChain during 2020 for Israel’s Netafim, the global leader in sustainable precision irrigation solutions.

Highlights of the study:

  • Corn grown with drip irrigation releases 53 percent fewer carbon emissions compared to flood-irrigated corn and 39% fewer carbon emissions compared to sprinkler irrigation.
  • Drip-irrigated corn requires 24% less fertilizer than when it is grown with flood irrigation, and nearly 17% less fertilizer than when it is grown with sprinkler irrigation.
  • Drip-irrigated corn produces 45% more per kilograms per hectare when compared to flood, and 23% more when compared to sprinklers.

An earlier study showed that rice grown using Netafim’s drip irrigation technology out-produces conventional paddy rice farming, uses 70% less water, and diminishes methane emissions to almost zero.

“We’ve been showing the world how to grow more with less for nearly 60 years and our pioneering technology is now critical to mitigate the impacts of climate change,” said Netafim Global Chief Sustainability Officer John Farner.

“Today, farmers are not only challenged by record-high energy and fertilizer costs, but also increased pressure to reduce their overall environmental footprint, all while producing our global food supply,” said Farner.

“Adoption of precision irrigation for corn, along with other crops around the world, is critical to stabilize farmer livelihoods, reduce the carbon footprint of farming, and ensure a food-secure future.”

With 33 subsidiaries and 17 manufacturing plants worldwide, Netafim offers customized irrigation and fertigation solutions to millions of farmers, from smallholders to large-scale agricultural producers, in over 110 countries.

ILAN founder aims to create warm ties with Israel among the growing Spanish-speaking population.

The Israel Latin America Network (ILAN), established last year by Jewish Mexican-Syrian businessman and philanthropist Isaac Assa, is expanding to the United States, Costa Rica, Chile, Guatemala and other countries in Central America.

“Over the last year we directly developed unique connections between the State of Israel and Latin American countries,” said Assa on June 9 at ILAN’s first award ceremony, held in partnership with the Peres Center for Peace and Innovation in Tel Aviv-Jaffa.

“Through ILAN, we formed strategic alliances with a number of branches throughout America, which will strengthen the economic, diplomatic and social resilience of the countries,” Assa said.

“In a few years, the Spanish-speaking population in the United States will increase to 100 million people, and therefore strengthening these connections is a supreme goal in the interest of the states and the peoples. With the help of the Israeli brain, the innovation and the local courage, we will be able to make groundbreaking international achievements.”

ILAN presented Shimon Peres Lifetime Awards to internationally prominent Israelis who have promoted relations between Israel and Latin America in the areas of health, quality of environment, economy and technology.

Among the recipients were the Technion’s Prof. Shulamit Levenberg, who developed the technology behind Aleph Farms cultivated steak; Dr Amir Kereshonvich, chief of pediatric neurosurgery at Schneider Children’s Medical Center, who with his wife, Hila, set up a volunteer-led initiative to perform complicated brain surgeries on children from the developing world; Henrique Cymerman, an Israeli journalist of Portuguese-Sephardi descent who serves as the Middle East correspondent for a several media outlets and is president of the Chamber of Commerce between Israel-Jordan and the Persian Gulf States; Tato Bigio, founding partner and CEO of UBQ Materials, which converts household waste into recyclable raw materials; and Ella Castelenus, a new immigrant from Mexico who founded Hola – Land, a platform that connects Latin America and Israel, and a partner in Cantera Capital, a fund for enterprises in Israel and Mexico.