Israeli scientists from the Technion – Israel Institute of Technology have developed an artificial molecule that could inhibit the development of Alzheimer’s disease, conceivably paving the way for better treatment of the disease.

The Technion scientists collaborated with The French National Centre for Scientific Research (CRNS) and published their findings in the weekly peer-reviewed Angewandte Chemie scientific journal published on behalf of the German Chemical Society.

The study was led by Professor Galia Maayan and doctoral student Anastasia Behar from the Schulich Faculty of Chemistry at the Technion, in collaboration with Prof. Christelle Hureau from the Laboratoire de Chimie de Coordination du CNRS, Toulouse, France.

Professor Galia Maayan of the Schulich Faculty of Chemistry at the Technion – Israel Institute of Technology. Courtesy.

The findings showed that an accumulation of copper ions, when interacting with the amyloid beta (Aβ) can lead to cell toxicity, causing dangerous conditions, including degenerative diseases of the brain, like Alzheimer’s. This accumulation of copper disrupts the removal of the Aβ , a peptide linked to the plaques that form in the brains of Alzheimer’s patients.

A 2013 study appearing in the Proceedings of the National Academy of Sciences journal written by a group led by Rashid Deane, a research professor in the University of Rochester’s Medical Center department of neurosurgery, said that copper accumulation in the body increases the progression of Alzheimer’s disease by preventing toxic proteins from leaving the brain. More specifically, copper ion interaction with the Aβ promotes ROS, or reactive oxygen species, highly reactive chemicals formed from oxygen. The production of ROS due to metal ions, like copper, leads to oxidative damages to the Aβ peptide and the potential formation of amyloid plaque.

Researchers have learned that the breakdown of the copper- Aβ complex and the removal of copper from the amyloid, prevents cells’ death and inhibition of the disease. The extraction of copper is done by a process called chelation or using molecules that bind the copper ions and extract them from the amyloid.

Developing the foundation

Technion Chemistry Professor Galia Maayan did not begin her career by studying copper ion accumulation and its impact on degenerative diseases. Instead, she simply focused on the molecule.

“I’m a chemist. So I look at a molecule and I said, ‘Oh I have this molecule, I have this metal ion, in this case, copper, how can I design something that is selective for copper?’ And then I will think about other applications,” she tells NoCamels, “When I did my postdoc at NYU, I learned a lot about these peptide mimics or peptoids. I developed chelators that are not selective [to specific metal ions.]”

Doctoral student Anastasia Behar of the Technion. Courtesy.

Prof. Maayan developed the foundation for copper and zinc-binding of peptoids and investigated how peptoids bound them — something she says no one had ever done up to that point — but it wasn’t until she met her first PhD student, Maria Baskin, (another author of the paper), that she understood that the molecules could be good for chelating metal ions related to specific diseases.

“We discussed copper, and then we started to think about Alzheimer’s,” she says, “and then we started to work on it.”

Prof. Maayan and Baskin developed the first generation of chelator molecules selective to copper. But they were not water soluble, she explains. “In order to start making the drugs you want to develop, you need your molecule to be, at least to a certain extent, water soluble.”

The Technion researchers developed their own method of making the molecule water soluble, without changing its shape or organization and patented the result. Thus, a water soluble peptoid chelator was created that could still selectively bind copper. Meanwhile, Anastasia Behar, who joined Prof. Maayan’s lab while completing her Master’s in Chemistry at the Technion, was sent to France for three months to work with CRNS after Prof. Maayan made a connection with Prof. Christelle Hureau.

Behar tells NoCamels that in France, the researchers created targeted environments where they could simulate processes in the brain where the accumulation of metals bound to Aβ was happening.

“Then we added our molecule and tested if it can interact with the amyloid-beta, take out the copper, and stop the radical production, which the molecule did eventually,” she explains.

“While working on the molecule, Nastia [Anastasia] learned how to do biochemical experiments to show the biology that the molecule can do. All of the things that we think can lead us toward future development of peptoids as drugs for Alzheimer’s,” Prof. Maayan said.

The Technion researchers developed their own method of making the molecule water soluble, without changing its scaffold or the way it was organized. This was tested in France. The water soluble peptoid chelator, a synthetic molecule dubbed P3, was able to perform its task selectively. It strongly binds copper and forms CuP3, extracting the copper from the amyloid. By doing this, it inhibits and even suppresses the formation of harmful oxidizing agents, without creating new processes, which neutralize amyloid toxicity.

Prof. Maayan says it’s important to note that the molecule that the researchers established is not the actual molecule they would like to be used when creating drug treatments for Alzheimer’s.

“It has solubility issues, stability issues. This is not a molecule we’re going to develop. This is just a base,” she tells NoCamels, “We are going to take it further and develop more and more molecules that will be better. Right now we’ve just put down the foundation and this is the breakthrough. We will make molecules that are more feasible later on.”

The next step, Prof. Maayan explains, is to go beyond the mimicking of an environment of a cell or of the brain in terms of a PH solution and to do more in-vitro experiments, or experiments with cells.

“We’ll do some in vitro experiments, then we will optimize the chemistry again, and then go back to in vitro until we are ready to go in vivo [with a living organism.],” she says, “It’s a long process. It can take several years, but we see the way so it’s not vague. We see the way and we now know what we need to do.”

Since the new algorithm was introduced, Maccabi health fund doctors have treated tens of thousands of UTI cases, and there has been a drop of around 35% in the need to switch antibiotics following the development of bacterial resistance to the drug prescribed.

Doctors at Israel’s Maccabi national health fund have recently begun working with an Artificial Intelligence-based predictive algorithm that advises doctors in the process of deciding on personalized antibiotic treatment for patients.

The new algorithm was developed by the Technion – Israel Institute of Technology together with KSM (Kahn-Sagol-Maccabi), the Maccabi Research and Innovation Center.

Maccabi chose to focus its first diagnoses on urinary tract infection – the most common bacterial infection among women. Around 30% of females suffer from the infection at least once during their lifetime, and up to 10% experience recurrent infections. Until now, in most cases, general treatment has been administered based on clinical guidelines and medical judgment. Sometimes, the bacteria prove to be antibiotic-resistant, resulting in the need to change the treatment plan.

Since the new algorithm was introduced, Maccabi doctors have treated tens of thousands of cases, and there has been a drop of around 35% in the need to switch antibiotics following the development of bacterial resistance to the drug prescribed.

This is significant because accuracy in the choice of antibiotics is far greater thanks to the new technology. In light of the success of this new development in the treatment of UTI, Maccabi has begun working on the development of additional detection systems that will help to contend with other infectious diseases that require personalized treatment with antibiotics.

Prof. Roy Kishony of the Technion Faculty of Biology (Technion)

The automated system works by recommending the most suitable antibiotic treatment for the patient to the doctor, based on clinical guidelines and other criteria such as age, gender, pregnancy status, residence in an assisted living facility, and personal history of UTI and antibiotics administered.

The unique algorithm was developed by Prof. Roy Kishony and Dr. Idan Yelin of the Technion Faculty of Biology, in cooperation with KSM, headed by Dr. Tal Patalon, and was introduced and implemented among Maccabi’s doctors by the health fund’s Medical Informatics team and Chief Physician’s Department.

“The algorithm we developed together with Maccabi’s experts is a major milestone in personalized medicine on the way to AI-based antibiotic treatments, which are personally tailored to the patient according to the prediction of treatment response and mitigate the development of resistant bacteria,” said Kishony.

Dr. Shira Greenfield, Director of Medical Informatics at Maccabi, said: “The significance of administering personalized antibiotic treatment is that it lowers the risk of antibiotic resistance developing – a global problem which all healthcare entities are working to solve.”

Dr. Martin Ellis, Chairman of the Israel Society of Hematology and Transfusion Medicine, spoke to The Jerusalem Post about two newer treatments for the main types of blood cancer.

Although only around five out of every 100,000 people suffer from blood cancer, the disease is among the most serious and deadly.

An estimated 68,000 people die from blood cancer each year in the United States alone, according to the Leukemia Research Foundation. The statistics in Israel are unknown.

But new and innovative treatments are being explored, according to Dr. Martin Ellis, Chairman of the Israel Society of Hematology and Transfusion Medicine.

He spoke to The Jerusalem Post about two newer treatments for the main types of blood cancers, leukemia, lymphoma and myeloma, in recognition of Blood Cancer Awareness Month.

For starters, CAR-T cells are currently playing a key role in treating people with blood cancer.

“We remove the T-cells from the patient and send them to the lab, where they get engineered using genetic engineering technology to identify specific molecules on the surface of the patient’s cancer,” Ellis, who is also head of the Hematology Department at Meir Medical Center in Kfar Saba, explained. “These engineered CAR-T cells are re-infused into the body intravenously. Then, the modified cells seek and destroy the malignant cells in the body.”

A model of the protein (the blue ribbon) and the DNA (the spheres) is binds (credit: WEIZMANN INSTITUTE OF SCIENCE)

He said the treatment is generally used on people with lymphoma and multiple myeloma, and specifically those who had prior treatments that did not work or had been in remission and the cancer came back.

“CAR-T can achieve a remission in the region of 60% to 70% of patients,” Ellis said. “And it appears that around 30% are actually cured. This is an unprecedented rate of success in the realm of cancer therapy.”

Doctors are already using the patient’s own immune system to attack his or her tumors, but on the horizon will be the use of CRISPR technology, which is “basically modifying as you would with an eraser and pencil the sequence of DNA in tumor cells and replacing the abnormal part of the DNA with normal DNA,” he explained.

So far, this has been done successfully in benign hematology, but not in malignant hematology. It is “trickier when it comes to cancer cells because the abnormalities are many and vary from cell to cell,” Ellis said. But he added that he expects doctors and scientists to get there soon.

Israel has been at the forefront of the next generation of blood cancer treatments. The CAR-T technology was first conceived and developed in the Weizmann Institute of Science by renowned immunologist Zelig Eshhar.

Moreover, Israeli Nobel Prize winning scientists Aaron Ciechanover and Avram Hershko from the Technion discovered a pathway responsible for the degradation of proteins, which was crucial to the creation of proteasome inhibitors that slow the degradation of proteins and hence inhibit the progression of cancer. Specifically, one of the most successful drugs used to treat multiple myeloma, Bortezomib, is based on this discovery.

“When it comes to treating blood cancers, the Israeli contribution has been significant and, as usual, out of proportion to our population and size,” Ellis said. 

For the first time, Technion scientists succeeded in constructing a network of major and small blood arteries, crucial for giving blood to implanted tissue

Researchers lead by Technion Professor Shulamit Levenberg, who specialises in tissue engineering, have succeeded in establishing a hierarchical blood artery network, crucial for giving blood to implanted tissue. In the research published in Advanced Materials, Dr. Ariel Alejandro Szklanny employed 3D printing for constructing huge and small blood arteries to form for the first time a system that comprised a functioning combination of both. The breakthrough took accomplished in Prof. Levenberg’s Stem Cell and Tissue Engineering Laboratory in the Technion’s Faculty of Biomedical Engineering.

The heart pumps blood into the aorta, which branches out into progressively smaller blood arteries, bringing oxygen and nutrients to all the tissues and organs. Transplanted tissues, as well as tissues created for transplantation, require similar blood vascular support.

Printing Blood Vessel Networks for Implantation

Previous experiments with synthetic tissue containing hierarchical vessel networks have involved an intermediary step of transplanting first into a healthy limb, enabling it to be infiltrated by the host’s blood vessels, and then transferring the structure into the damaged location.

Notably, whereas prior studies employed animal collagen to create the scaffolds, the Israeli company CollPlant modified tobacco plants to make human collagen, which was successfully used for 3D bioprinting the vascularized tissue structures.

This study is a significant step forward in the direction of individualized medicine. Large blood vessels with the precise shape required can be manufactured and inserted alongside the tissue to be implanted. This tissue can be created using the patient’s own cells, hence avoiding the possibility of rejection.

Notably, whereas prior studies employed animal collagen to create the scaffolds, the Israeli company CollPlant modified tobacco plants to make human collagen, which was successfully used for 3D bioprinting the vascularized tissue structures.

This study is a significant step forward in the direction of individualized medicine. Large blood vessels with the precise shape required can be manufactured and inserted alongside the tissue to be implanted. This tissue can be created using the patient’s own cells, hence avoiding the possibility of rejection.

SOURCE

The future of personalised medicine: Technion team built blood tree from scratch

Currently, transplanted grafts need to be implanted into a healthy part of the body so that the patient can generate new blood vessels to support it.

Engineered blood vessels in Technion study. Vascular structures in the scaffold lumen (brown) communicate with vessels located in the surrounding hydrogel (green).
(photo credit: Courtesy)

Skin flaps, bone grafts, implanted tissue – recent advancements in medicine have changed the face of surgery in terms of autologous – meaning self – transplantations.

While extensive damage to organs once meant a nearly sure amputation or need for an external transplant, today’s science focuses on harvesting cells and tissue from a person’s own body to complete the injured pieces of the puzzle, using grafts and flaps to repair skin, vessels, tubes and bones.

Yet, ask any surgeon attempting to insert a flap and they would tell you that the most important – and restrictive – component of a graft’s success is ample blood supply.

A team of researchers at the Technion recently found a way to meet this need. For the first time, these scientists succeeded in 3D printing a network of big and small blood vessels that could provide blood to implanted tissues just like the human body.

Up until now, medicine hasn’t been able to mimic the body’s ability to create a suitable hierarchy in the blood vessel tree. In our bodies, the heart pumps blood into a large tube called the aorta, which measures roughly 2-3 cm in diameter. The blood vessels then branch off into smaller and smaller tubes that are appropriate to each organ’s need and capacity, until they reach minuscule arterioles of only 5 to 10 micrometers.

HUMAN BODY circulatory system showing the heart and blood vessels (credit: FLICKR)

Dr. Ariel Alejandro Szklanny of the Technion team, led by Professor Shulamit Levenberg, a specialist in tissue engineering, found a way to use 3D printing to form a system containing a functional combination of both the large and small vessels.

The new breakthrough may allow a tissue flap to be created in a lab already connected to a blood network suited to its size and function.

Currently, transplanted grafts need to be implanted into a healthy part of the body so that the patient can generate new blood vessels to support it; then, the graft is relocated to an affected area as healthy tissue.

The new technique could potentially eradicate this intermediate step, drastically improving recovery times and cutting down on the number of procedures a patient would need to undergo.

In his recently published study in Advanced Materials, Dr. Szklanny described how he created a polymeric scaffold filled with small holes, mimicking the large blood vessels of the body. These holes allowed the connection of smaller vessels to join into the engineered large vessels. With collagen bio-ink, the team then printed and assembled a complex network around and within the main scaffold, later covering it with endothelial (human blood vessel lining) cells. A week later, the incubated artificial apparatus joined with the cells to create a hierarchical structure just like the human blood vessel tree. 

While previous studies in this field used animal-borne collagen, the Technion team used engineered tobacco plants created by the Israeli company CollPlant.

The mesh was transplanted into a study rat and attached to the main artery in its leg. The blood through the artery spread through the network exactly as it would within the body, carrying oxygen and nutrients to the distant parts of the implanted tissue, and without any leaks.

This achievement is an important tool in the world of personalized medicine and could be a huge leap forward in tissue engineering and treatment.

Israel’s Itamar Medical, a medtech firm that produces devices to aid the diagnosis of sleep disorders, announced on Monday that it has signed a deal to be acquired by Zoll Medical for a total value of about $538 million.

Zoll Medical will acquire all outstanding shares of Itamar Medical for $31 per ADS (American Depository Share,) or $1.03 (equivalent to approximately NIS 3.31) per ordinary share, in cash. The offer of $31 per ADS in cash represents a 50.2 percent premium over the price of Itamar Medical’s ADS on Nasdaq this past Friday.

Since news of the acquisition broke, Itamar Medical’s stockhas has surged, spiking more than 43 percent in pre-market session.

Zoll Medical is an international medical devices manufacturer that develops products and software solutions focused on improving outcomes with novel resuscitation and acute critical care.

US sleep apnea diagnostic and treatment firm Lofta partnered with Itamar Medical to integrate the company’s diagnostic tool into its process. 

Founded in 1997 by Giora Yaron, now , Itamar Medical is focused on the development and commercialization of non-invasive medical devices and solutions to aid the diagnostics of respiratory sleep disorders.

Itamar Medical developed the WatchPAT Home Sleep Apnea Device, a sleep diagnosis program for patients and healthcare professionals. The company’s WatchPAT One device is cleared by the FDA and is recognized as a safe and effective method for home-based testing for sleep apnea.

 “The integration of Itamar’s WatchPAT technology and Digital Health solution for sleep apnea with Zoll Medical’s commercial footprint will accelerate our mission of advancing home sleep medicine to benefit the population of undiagnosed and untreated patients,” said Gilad Glick, president and Chief Executive Officer of Itamar Medical.

“Zoll Medical is committed to improving outcomes for underserved patients suffering from serious cardiopulmonary conditions,” said Jon Rennert, CEO of Zoll Medical. “It is currently estimated that 60% of cardiovascular patients suffer from some form of sleep apnea, and the majority of these patients go undiagnosed. The combination of ZOLL Medical and Itamar Medical will help more patients receive diagnosis and treatment for sleep-disordered breathing. We look forward to helping strengthen the collaboration between the worlds of cardiology and sleep medicine.”

Zoll Medical expects the acquisition to close by the end of 2021, subject to approval by the shareholders of Itamar Medical, regulatory approvals, and other customary closing conditions.

Sleep diagnostics at home

While most of Itamar Medical’s diagnostic devices were used by cardiologists and other specialists in sleep laboratories, the onset of the COVID-19 pandemic meant that the company’s emphasis shifted to home diagnostic kits. Toward the start of the pandemic when little was known about who it predominantly affected and why, patients suffering from all kinds of ailments – including sleep apnea – would be reticent about going to hospitals to fulfil appointments. Meanwhile, the stresses of working from home, potential loss of income and the need to homeschool children, likely increased the onset of sleep apnea, requiring an at-home solution.

The company’s revolutionary WatchPAT system, an easy-to-use, accurate, Home Sleep Apnea Test (HSAT) and sleep study device continues to remain reliable for this very reason. The WatchPAT was designed with patient use in mind for “in-home” sleep apnea testing in the comfort of one’s own bedroom, the company has said. This environment is more representative of one’s personal sleep habits.

Screenshot of the WatchPAT One, Itamar Medical’s disposable home sleep apnea test product.

The WatchPAT system attaches to a user’s index finger, chest and wrist to record vital measurements that are used to identify events of sleep apnea. It measures peripheral arterial (PAT) signal, heart rate, oximetry (a non-invasive way of monitoring a person’s oxygen saturation) , actigraphy (a non-invasive method of monitoring human rest/activity cycles), body position, snoring and chest motion.

The device is connected to the smartphone. Prior to sleep, patients can pair the wearable device to their phone. A smartphone app transmits the WatchPAT One’s data from seven channels to the cloud. Once the study is compelted, data can be sent to a clinician for review.

One of the most unique aspects of the device is that it is disposable. That means once a patient has slept with the device, they can dispose of it rather than needing to send it back or manually download data.

In 2016, Itamar Medical received FDA clearance to expand the medical indication of WatchPAT for sleep apnea diagnosis. Under that approval, the use of WatchPAT in the USA was permitted from the age of 12, expanding the previous indication for ages 17 and older.

At the time – and the problem could be increasingly acute now – the incidence of sleep apnea in adolescents reached alarming rates. It was attributed, among other comorbidities such as the increase of obesity in this age group. Additional factors could also include Attention Deficit Hyperactivity Disorder (ADHD), in which patients would likely not receive the appropriate medical care as long as the underlying sleep apnea remained undiagnosed and untreated.

The sleep apnea market is a growing one, predicted to expand to some $9.9 billion by 2026. Indeed, the highest compound annual growth rate is expected to occur in the home-based individuals’ segment, in part driven by an increasing personal awareness of the health benefits associated with resolving sleep apnea issues.

Study of 11,000 infected adults during the Delta wave in Israel sees vaccine’s protection disappearing at six months and restored by third dose.

An Israeli study has found that the two-dose Pfizer/BioNTech vaccine against Covid-19 is initially effective in reducing the viral load of breakthrough infections — even with the Delta variant of the SARS-CoV-2 coronavirus.

The lower the viral load, the lower the chance of transmitting the virus and developing symptoms.

But after analyzing viral loads of over 11,000 infected adults during the summer Delta-dominant wave in Israel, the researchers saw the vaccine’s protection starts declining two months after the second dose and disappears by about six months.

“Encouragingly, we find that this diminishing vaccine effectiveness on breakthrough infection viral loads is restored following the booster vaccine,” the researchers write.

In fact, the third vaccination caused a more than four-fold reduction in viral loads.

The study results, posted September 1 on the medRxiv website prior to peer review, was carried out by a multidisciplinary team of researchers from the Technion-Israel Institute of Technology, Tel Aviv University and Maccabi Health Services.

The findings seem to support Israel’s unprecedented decision, in July, to begin offering booster shots to citizens at least five months past their second vaccine dose.

As of now, more than 3 million Israelis have gotten that third shot. A recent Israeli study in the New England Journal of Medicine confirms the effectiveness of the booster at preventing both infection and severe illness.

How long the booster’s protection remains effective is a question that can be answered only by further research.

The study was supported by a grant from the Israel Science Foundation as part of the KillCorona-Curbing Coronavirus Research Program.

SOURCE

COVID Booster Shot Reduces Viral Load, Limits Transmission, Israeli Study Finds

The study, which has yet to be peer-reviewed, analyzed samples from 11,000 people infected with the COVID delta variant in Israel and found booster shots reduced viral loads by a factor of four

A vaccination center in Jerusalem, last monthCredit: Emil Salman

A booster shot of Pfizer’s coronavirus vaccine significantly reduces viral load in patients infected with the delta variant, and therefore reduces the chances of transmission, a new Israeli study has found.

The study was conducted jointly by the Technion – Israel Institute of Technology and KSM – the Maccabi Research and Innovation Center. It was published on the MedRxiv website, which is for papers that haven’t yet been published in a scientific journal.

The researchers concluded that about six months after someone receives the second dose of the vaccine, its effectiveness at reducing viral load dissipates. But a third dose slashes viral loads by a factor of four, thereby restoring the vaccine’s effectiveness to what it was shortly after the second dose was administered.

The researchers analyzed 11,000 PCR swab tests conducted by the Maccabi health maintenance organization on patients who had been infected with the delta variant. These patients were divided into three groups – people who were never vaccinated, people who were infected within six months of getting the second dose and people who were infected after getting the booster shot.

“What we discovered is that the vaccine’s effectiveness with respect to viral load gradually wanes over time, until after six months, [viral load] reaches a high level, similar to that of an unvaccinated person,” said Matan Levine-Tiefenbrun, a doctoral student at Tel Aviv University who is also affiliated with the Technion and was the lead researcher. “Nevertheless, we discovered that the booster shot brings the viral load back down by a factor of four, to what it was before.”

A medical worker prepares a coronavirus vaccine dose in Jerusalem, last month.Credit: Ohad Zwigenberg

The PCR test enables researchers to assess the size of the viral load based on how many times sequences of the virus’ DNA needed to be replicated to produce a result. The greater the number of replications required, the lower the initial viral load was. Analyzing large numbers of such tests enables researchers to identify broad trends – in this case, the relationship between and how long it has been since the patient’s last vaccine dose.

Viral load is a significant factor in both the likelihood of developing symptomatic illness and the likelihood of transmission, since someone who is coughing and sneezing will spread the virus more than an asymptomatic patient would.

The study found that people infected less than two months after their second dose had lower viral loads than unvaccinated people. Consequently, they also had milder symptoms and were less infectious.

But after those first two months, the researchers said, immune protection gradually begins waning and viral loads rise. This process peaks after about six months.

Aside from Levine-Tiefenbrun, the other researchers were Prof. Roy Kishony and Dr. Idan Yellin, both of the Techion, and a group of researchers from KSM led by Dr. Tal Patalon.

In March, this same group published an article in the journal Nature Medicine showing that Pfizer’s coronavirus vaccine starts significantly reducing viral load as early as 12 days after the first dose. But that study involved the alpha variant, also known as the U.K. variant, rather than delta.

“We’re seeing that the vaccines are also effective in the fourth wave, against the delta variant,” Kishony said. “The effectiveness seems very similar to what it was against the British variant after receipt of the first two doses.”

However, he added, the results of the earlier study can’t be compared directly to the results of the new study, “because the British variant has been pushed aside and disappeared.”

The new study bolsters the data from another Israeli study, this one peer-reviewed, that was published last week in the New England Journal of Medicine, and which FDA experts made use of in discussing whether to recommend booster shots in the United States. That study found that the vaccine’s effectiveness in preventing transmission declines significantly after six months, but even then, vaccinated people are roughly 50 percent less likely to infect others than unvaccinated people.

After the booster, however, Pfizer’s vaccine is 95 percent effective in preventing transmission, that study said.

Researchers at the Technion have developed a highly stretchable electronic material and a wearable sensor capable of identifying precise bending and twisting motions.

Scientists at the Technion-Israel Institute of Technology have produced a highly stretchable electronic material and a wearable sensor capable of identifying precise bending and twisting motions.

Essentially, it is an electronic skin.

The development will be able to help identify ailments and disease, for example, the early onset of Parkinson’s, or help amputees adapt to prosthetics, the developers have said.

It recognizes the range of movements that human joints normally makes with the precision of up to half a degree. This breakthrough is the result of collaborative work, headed by Professor Hossam Haick from the Wolfson Faculty of Chemical Engineering.

It was recently published in Advanced Materials, a peer-reviewed journal. 

Professor Haick’s lab focuses on wearable devices. Wearable motion sensors can currently recognize bending movement, but not twisting. Sensors that recognize twisting are large and cumbersome.

Ph.D candidate Yehu David Horev and postdoctoral fellow Dr. Arnab Maity have found a way to overcome this problem. Horev found a way to form a composite material that is both usable as a sensor and is flexible, stretchable, breathable, biocompatible, and does not change its electrical properties when stretched.

Dr. Maity was able to solve the mathematics of analysing the received signal.

Professor Hossam Haick (credit: TECHNION SPOKESPERSON’S OFFICE)

The novel sensor is breathable, durable and lightweight, allowing it to be worn by humans for long periods of time. 

“This sensor has many possible applications,” Prof. Haick stated. 

“It can be used in early disease diagnosis, alerting of breathing alterations, and motor system disorders such as Parkinson’s disease. It can be used to assist patients’ motor recovery and be integrated into prosthetic limbs. In robotics, the feedback it provides is crucial for precise motion. In industrial uses, such sensors are necessary in monitoring systems.”

TECHNION SCIENTISTS CREATED A WEARABLE MOTION SENSOR CAPABLE OF IDENTIFYING BENDING AND TWISTING

One doesn’t pay much attention to sensors, but they are omnipresent in modern life. A sensor is a device that responds to a physical stimulus such as heat, light, sound, pressure, magnetism or a particular motion and transmits a resulting impulse as for measurement or operating a control. It measures physical input from its environment and converts it into data that can be interpreted by either a human or a machine.

The most frequently used types of sensors are classified according to hat they react to – electric current or magnetic or radio sensors, humidity, fluid velocity or flow, pressure, temperature sensors, proximity sensors, optical sensors or position sensors.

Sensors are used in everyday objects such as touch-sensitive elevator buttons, lamps that brighten or dim by touching the base, along with innumerable applications of which most people are unaware. 

Aside from home use, sensor applications include manufacturing, medicine, machinery, planes and aerospace, vehicles, robotics and many other aspects of life. 

Wearable strain sensors have been attracting special attention in the detection of human posture and activity, as well as for the assessment of physical rehabilitation and kinematic, but it is a challenge to fabricate stretchable and comfortable-to-wear permeable strain sensors that can provide highly accurate and continuous motion recording while exerting minimal constraints and maintaining low interference with the body. 

Now, scientists at the Technion-Israel Institute of Technology in Haifa have created a wearable motion sensor capable of identifying bending and twisting. Made from a highly stretchable electronic material, it is essentially an electronic skin capable of recognizing the range of movement human joints normally make, with up to half a degree precision. 

This breakthrough is the result of collaborative work among researchers from different fields in the Laboratory for Nanomaterial-Based Devices, headed by Prof. Hossam Haick from the Wolfson Faculty of Chemical Engineering. It was recently published in Advanced Materials under the title “Stretchable and Highly Permeable Nanofibrous Sensors for Detecting Complex Human Body Motion”

and was featured on the journal’s cover.

The new sensor has many possible applications,” said Haick. “It can be used in early disease diagnosis, alerting of breathing alterations, and motor system disorders such as Parkinson’s disease. It can also assist patients in their motor recovery and be integrated into prosthetic limbs. In robotics, the feedback it provides is crucial for precise motion. In industrial uses, such sensors are necessary in monitoring systems, putting them at the core of the Fourth Industrial Revolution.”

This breakthrough is the result of collaborative work between researchers from different fields in the Laboratory for Nanomaterial-Based Devices, which Haick heads. 


At present, existing wearable motion sensors can recognize bending movement, but not twisting. Existing twisting sensors, on the other hand, are large and cumbersome and cannot be worn.. This problem was overcome by doctoral candidate Yehu David Horev and postdoctoral fellow Dr. Arnab Maity. 

Horev found a way to form a composite material that was both conductive – and thus, usable as a sensor – and flexible, stretchable, breathable and biocompatible, I also did not change its electrical properties when stretched. 

Maity then solved the mathematics of analyzing the received signal, creating an algorithm capable of mapping bending and twisting motion – the nature of the movement, its speed and its angle. The novel sensor is breathable, durable and lightweight, making it possible to be worn on the human body for prolonged periods.

“Electrically conductive polymers are usually quite brittle,” explained Yehu about the challenge the group had overcome. “To solve this, we created a composite material that is a little like fabric. The individual polymer ‘threads’ cannot withstand the strain on the material, but their movement relative to each other lets it stretch without breaking. It is not too different from what lends stretch to T-shirts. This allows the conductive polymer withstand extreme mechanical conditions without losing its electrical properties.”

What makes this achievement more important is that the materials the group used are very inexpensive, resulting in a cheap sensor. “If we make a device that is very expensive, only a small number of institutions in the Western world could afford to use it. We want the technological advances we achieve to benefit everyone, regardless of their geographic location and socioeconomic status,” said Haick. True to his word, among the laboratory’s other projects is a tuberculosis-diagnosing sticker patch, which is sorely needed in developing countries.

Haick is an expert in the field of nanotechnology and non-invasive disease diagnosis who earned his doctorate from the Technion in 2002. After graduation, he completed two postdoctoral fellowships – first at the Weizmann Institute of Science in Rehovot and then at California Institute of Technology. He returned to the Technion at the end of 2006 as an assistant professor, becoming a full professor in 2011. 

He has published more than 220 publications in top-level journals in the field of nanotechnology, advanced/applied materials/chemistry and medicine, and technologies he and his team developed have led to the production of more than 42 patents and patent applications – many of which have been licensed to six international companies.

An Arab-Israeli scientist and engineer, Haick is a pioneer known for inventing the Nano Artificial Nose for detection of disease from exhaled breath.  He was included in more than 80 top-rank listings worldwide, including the “MIT Technology Review” list of 35 leading young scientists in the world, the “50 Sharpest Israeli Minds” and  the world’s top-100 influential innovators in the Digital Technology by Nominet Trust in London. 

A team of scientists has found why elderly people are more susceptible to COVID-19 and are working to reverse the aging process of the body’s immune system

Scientists from the Technion-Israel Institute of Technology say they have found a way to rejuvenate the aging process of the body’s immune system.

Prof. Doron Melamed and doctoral student Reem Dowery sought to understand why the elderly population is more susceptible to severe cases of COVID-19 and why the vaccines seem to be less effective and wane faster among this population.

The results of their work were published this month in the peer-reviewed, online medical journal Blood.

The secret begins with B cells, also known as B lymphocytes. These are the cells that produce antibodies against any pathogen that enters the body. They play a key role in protecting people from viruses and diseases.

B cells are produced in bone marrow and then travel through the blood to lymph nodes and the spleen, where they wait for pathogens to enter and then attack them.

“When you are young, you have young cells, and young cells have a very diverse ability to recognize anything [pathogenic] that comes into your body,” Melamed told The Jerusalem Post.

B cells do not live long, but they are constantly being replenished by new ones sent from the bone marrow, creating what Melamed calls “homeostasis,” a state in which the total number of B cells in the bone marrow and outside remains constant.

However, B cells do not just disappear. They turn into “memory” B cells so that if the body is exposed to a previous pathogen, the individual will not get sick. That is because the immune response will be fast and robust, and it will eliminate the pathogen, often without the individual knowing he or she had been exposed to it.

Unlike B cells, memory cells are long-lived.

“Imagine you are growing into adulthood, and you become an adult and then an older person,” Melamed said. “You accumulate in your body many memory cells. You are exposed all the time to pathogens, and hence you make more and more memory cells. Because these are so long-lived, there is no room left for new B cells.

”What happens when a new pathogen, such as the coronavirus, comes along? There are no young B cells that can recognize it.

That is one of the reasons why older people are more susceptible to severe COVID-19 and many other diseases.

As noted, this happens because of the body’s need for homeostasis, something that Melamed’s lab discovered a decade ago.

BUT THIS year, they took the discovery another step and figured out a mechanism to override the system.

“We found specific hormonal signals produced by the old B cells, the memory cells, that inhibit the bone marrow from producing new B cells,” Melamed said. “This is a huge discovery. It is like finding a needle in a haystack.

”It also means that, over time, specific drugs or treatments can be found to inhibit one of the hormones in the signaling pathway and get the bone marrow to produce new B cells.

Melamed Research group (credit: NITZAN ZOHAR/TECHNION SPOKESPERSON’S OFFICE)

What happens when a new pathogen, such as the coronavirus, comes along? There are no young B cells that can recognize it

.That is one of the reasons why older people are more susceptible to severe COVID-19 and many other diseases.

As noted, this happens because of the body’s need for homeostasis, something that Melamed’s lab discovered a decade ago.

BUT THIS year, they took the discovery another step and figured out a mechanism to override the system.
“We found specific hormonal signals produced by the old B cells, the memory cells, that inhibit the bone marrow from producing new B cells,” Melamed said. “This is a huge discovery. It is like finding a needle in a haystack.

”It also means that, over time, specific drugs or treatments can be found to inhibit one of the hormones in the signaling pathway and get the bone marrow to produce new B cells.

To validate their theory, Melamed’s lab collaborated with the departments of hematology and rheumatology at Sourasky Medical Center in Tel Aviv and Rambam Health Care Campus in Haifa. As part of treatment for some medical conditions, such as lupus, lymphoma and multiple sclerosis, patients undergo B cell depletion, meaning a significant amount of memory B cells is removed from their bodies.

Examining older patients who underwent this procedure, the group found that their immune systems rejuvenated, and their bodies could produce new B cells again.

An effect similar to B cell depletion can be produced by inhibiting one of the hormones in the signaling pathway that suppresses the production of new B cells.

“Now we understand that there is some kind of conversation between compartments in the body, between how B cells are produced and what controls that,” Melamed said.

In the interim, he recommended that doctors use this knowledge to protect the elderly better, such as by instituting a vaccination program targeted just for the adult population that preempts variants with an additional shot.

“Even every three or four months, vaccinate them again and again to ensure they maintain high antibodies,” Melamed said.

He also suggested mixing vaccines, such as combining a shot of a Pfizer mRNA vaccine with an AstraZeneca booster given several months later, “which may generate better stimulation of the elderly immune system.

”At the same time, clinical trials would be needed to determine how to safely inhibit the hormones to find a longer-term solution, hopefully before the next pandemic, Melamed said.