July 21, 2021
AI system developed to diagnose heart problems
Electrocardiogram in hospital (Shutterstock)

A new artificial intelligence system can diagnose heart issues with greater precision than people.

Article published at www.jpost.com on July 12, 2021.

3D image of a heart in a cardiology test (photo credit: REUTERS)
3D image of a heart in a cardiology test (photo credit: REUTERS)

Technion researchers have discovered a viable way in which to reliably use Artificial Intelligence (AI) in medicine and demonstrated the use of practical systems for cardiology in an article published in Proceedings of the National Academy of Sciences of the United States of America (PNAS). 

Even as AI has developed greatly over the past decades, the use of this technology in medical products is still scarce, and the methods currently employed by doctors are based on older technology.

In the article, the research team demonstrated the use of the new technology to identify diseases based on hundreds of electrocardiograms (ECG), which are currently the most common technology used in cardio-medicine.

The new systems analyzes the ECGs using an augmented neural network, which has been taught various patterns based on a system of more than 1.5 million ECG tests from hundreds of patients in hospitals worldwide.

The ECG is a quick and non-invasive test that provides information on the workings of the heart. The disadvantage of the test is that the cardiologists who read the printouts are susceptible to mistakes in their interpretations, either because they are subjective or because they cannot see what they are looking for with enough precision.

The new systems are more accurate and can detect pathological conditions that human cardiologists are physically unable to see.

The researchers worked closely with cardiologists and created the system according to their requirements. The output includes an uncertainty estimation of results, alerts regarding inconclusive results and increased risk of pathology that the ECG signal does not observe itself.

The system demonstrated enough sensitivity and precision that it can alert for risk of arrhythmia even when it is not demonstrated in the ECG. Without this early diagnosis, people run a higher risk of heart-attacks and strokes.

Moreover, the AI uses official cardiology terminology to explain its decisions.

The study was headed by Prof. Yael Yaniv, director of the Bio-electric and Bio-energetic Systems Laboratory at the Faculty of Biomedical Engineering at the Technion; Prof. Alex Bronstein, director of the VISTA Laboratory at the Taub Faculty of Computer Science; Prof. Assaf Schuster of the Learning at Scale Laboratory (MLL) at the Taub Faculty of Computer Science and co-director of the MLIS Center (Machine Learning & Intelligent Systems); Yonatan Elul, a doctoral student in the laboratories of Professors Bronstein, Yaniv, and Schuster and Aviv Rosenberg, a doctoral student in the laboratory of Professors Bronstein and Yaniv. 

The project was sponsored by the Ministry of Science and Technology and the Technion Hiroshi Fujiwara Cyber Security Research Center and the Israel Cyber Directorate.


And they told him, “Yosef is still alive; yes, he is ruler over the whole land of Egypt.” His heart went numb, for he did not believe them.

Genesis 45:26 (The Israel BibleTM)

Article published at www.israel365news.com on July 13, 2021.

Electrocardiogram in hospital (Shutterstock)
Electrocardiogram in hospital (Shutterstock)

Man can teach computers to do many things better than humans can today; in fact, computers can teach other computers to do so. In recent years, spectacular progress has been made in the world of artificial intelligence (AI) and “deep learning” (machine-learning methods based on artificial neural networks that have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, medical image analysis, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance).  

Despite their great promise, AI systems have yet to become ubiquitous in the daily practice of medicine largely due to several crucial unmet needs of healthcare practitioners. These include lack of explanations in clinically meaningful terms, handling the presence of unknown medical conditions and transparency regarding the system’s limitations, both in terms of statistical performance as well as recognizing situations for which the system’s predictions are irrelevant. 

So at present, there are virtually no medical products on the shelf that use this technology, and as a result, doctors continue to use the same tools used in previous decades.

Prof. Yael Yaniv (Technion)
Prof. Yael Yaniv (Technion)

To find a solution to this problem, the research group of Prof. Yael Yaniv of the Faculty of Biomedical Engineering at the Technion-Israel Institute of Technology in Haifa joined forces with the research groups of Prof. Alex Bronstein and Prof. Assaf Schuster of the Taub Faculty of Computer Science to create an AI-based system that automatically detects disease on the basis of hundreds of electrocardiograms, which are currently the most widespread technology employed for the diagnosis of cardiac pathology.

Elul and Aviv Rosenberg Now, under their joint supervision, research by doctoral students Yonatan has been published in Proceedings of the National Academy of Sciences of the United States of America (PNAS) under the title “Meeting the unmet needs of clinicians from AI systems showcased for cardiology with deep-learning–based ECG analysis.

The new system automatically analyzes the electrocardiograms (ECGs) using augmented neural networks – the most prominent tool in deep learning today. These networks learn different patterns by training on a large number of samples, and the system developed by the researchers was trained on more than 1.5 million ECG segments sampled from hundreds of patients in hospitals in various countries.

The electrocardiogram, developed more than 100 years ago, provides important information on conditions affecting the heart quickly and non-invasively. The problem is that the printouts have to be interpreted by a human cardiologist, so their interpretation is – by necessity – pervaded by subjective elements. As a result, numerous research groups around the world are working to develop systems that will automatically interpret the printouts efficiently and accurately. These systems are also able to identify pathological conditions that human cardiologists –

regardless of their experience – are unable to detect.

The Technion system was built according to the needs set down by cardiologists, and its output includes an uncertainty estimation of the results, indication of suspicious areas on the ECG wave and alerts regarding inconclusive results and increased risk of pathology not observed in the ECG signal itself. 

The system is sensitive enough to provide alerts regarding patients at risk of arrhythmia (irregular heartbeat) – even when the arrhythmia is not shown on the ECG printout. In addition, the rate of false alarms is very minimal. The new system also explains its decisions using the accepted cardiology terminology.

The researchers hope their system can be used for cross-population scanning for the early detection of those who are at risk of arrhythmia. Without this early diagnosis, these people have an increased risk of heart attack and stroke.