Haifa-based Pluri entered into an exclusive collaboration with Ukrainian umbilical cord blood bank Hemafund last month to stockpile and distribute its placental expanded cell therapy, PLX-R18, as a potential treatment for life-threatening radiation sickness. Under the terms of the collaboration agreement with Hemafund, Pluri will produce and supply an initial capacity of 12,000 doses of its PLX-R18, sufficient to treat 6,000 people. Pluri was founded in 2001 by Technion alumnus Shai Meretzki, who made use of a stem cell patent developed during his Ph.D. studies in the Rappaport Faculty of Medicine

Amid rising threat from Russia, Pluri partners with Ukrainian blood bank to stockpile remedy for deadly radiation poisoning that uses cells grown from donated placentas.

About two weeks after a Russian drone struck the cover built to contain radiation at the Chernobyl nuclear power plant, Israeli biotech firm Pluri, a developer of placenta-based cell technology, landed an agreement to help Ukraine develop an emergency response to life-threatening radiation sickness in case of a radiological event.

The nearly three-year war between Russia and Ukraine has underscored the ever-rising threat of nuclear fallout amid repeated shelling of a nuclear power plant in southern Ukraine and Russian President Vladimir Putin’s threat to use nuclear weapons.

Last month, Haifa-based Pluri (formerly Pluristem) entered into an exclusive collaboration with Ukrainian umbilical cord blood bank Hemafund to stockpile and distribute its placental expanded cell therapy, PLX-R18, as a potential treatment for life-threatening radiation sickness.

The condition, also known as hematopoietic acute radiation syndrome (H-ARS), occurs when a person is exposed to high levels of ionizing radiation, such as during a nuclear attack or accident. Destruction of the bone marrow and blood cells ensues, leading to severe anemia, infection and bleeding.

Death can occur in four to eight weeks if effective treatment is not received.

Over the past two decades, Pluri has focused on developing 3D technology to mimic how living cells communicate and interact with the body to grow and expand. The biotech firm harnesses stem cells extracted from placenta donated by healthy women who have given birth by cesarean section in hospitals around the country. The single placenta cells are cultivated in a proprietary 3D bioreactor system with a micro-environment that resembles and simulates the human body.

“Cells are the building blocks of life — everything in our world starts and ends with cells,” Pluri chief commercial officer Nimrod Bar Zvi told The Times of Israel. “These tiny cells are amazing creatures that exist in almost any aspect of our life, whether we get them from humans, animals, or plants.”

Bar Zvi explained that once placed inside bioreactors, the stem cells latch onto scaffolds and start “to communicate with each other and proliferate, similar to what happens in the human body, and they are secreting proteins as we mimic the conditions of the natural environment they need to expand.”

Using the 3D cell expansion technology method, a single placenta cell can be multiplied into billions of distinct cells, Pluri said. As a result, cells from a single placenta can treat more than 20,000 patients.

“In the end of that process, we have a vial that contains a specific amount of our placental expanded cells depending on the dosage needed for the patient,” said Bar Zvi. “Once the vial with the cells is injected into the muscle, it stimulates the human body’s own capabilities for the reactivation and regeneration of blood cells, mitigates the effects of radiation exposure and we see the recovery happening.”

Pluri says that its cell-based treatment stimulates and regenerates the production of all three types of blood cells produced in the blood marrow: white and red blood cells as well as platelets.

Under the terms of the collaboration agreement with Hemafund and subject to receiving external government and private sector funding, the veteran biotech firm will produce and supply an initial capacity of 12,000 doses of its PLX-R18, sufficient to treat 6,000 people. The doses will be stored and managed by Hemafund and delivered to medical institutions across Ukraine in case of need.

“At present, there are no other treatments for radiation poisoning that use stem cells taken from a placenta as far as we know,” said Bar Zvi. “The ability to treat acute radiation exposure with cell therapy and to scale it up for mass production is where we are unique since we can supply thousands and thousands of vials to large numbers of people.”

Pluri is publicly traded on the Nasdaq as well as the Tel Aviv Stock Exchange. At the Matam Advanced Technology Park in Haifa, the biotech firm operates a cell therapy production facility, which it says has been designed to handle large-scale manufacturing of cellular therapies. It could also be mobilized for mass production to respond to global emergencies if nuclear threats escalate. The firm employs a total of 130 people.

Pluri and Hemafund said they will also seek to advance clinical trials to register the PLX-R18 therapy as a radiation countermeasure and obtain necessary regulatory approvals from Ukraine’s health ministry. The collaboration is expected to potentially generate over $100 million in value for both parties.

“Our cryostorage facilities and logistics network position us well to support the introduction of PLX-R18 as a potential vital tool for radiation emergency preparedness in Ukraine,” said Hemafund founder Yaroslav Issakov. “While we hope such treatments remain precautionary, our goal is to stand ready to distribute this potential therapy in the event of an emergency.”

Pluri uses patented technology to create cell-based pharmaceutical and food products. (Courtesy)

Pluri said that its PLX-R18 has been safely tested in both humans and animals. Results from a series of recent studies in animals of its stem cell therapy after radiation exposure demonstrated an increase in survival rates from 29% in the placebo group to 97% in the treated group.

The administration of PLX- R18 as a prophylactic measure 24 hours before radiation exposure, and again 72 hours after exposure, resulted in an increase in survival rates, from 4% in the placebo group to 74% in the treated group.

The FDA previously cleared an Investigational New Drug application for PLX-R18 for the treatment of radiation sickness and granted it Orphan Drug Designation. This means that should a nuclear event take place, Pluri could use the drug to treat victims.

Pluri’s bioreactors for the cultivation of cell-based therapy products. (Courtesy/Michael Brikman)

In July 2023, Pluri was awarded a three-year $4.2 million contract by the US National Institutes of Health to continue to develop its novel treatment for deadly radiation sickness and to collaborate with the US Department of Defense’s Armed Forces Radiobiology Research Institute in Maryland.

As part of the contract, the NIH’s National Institute of Allergy and Infectious Diseases (NIAID) will fund final studies required to complete the biotech firm’s application for FDA approval to market its PLX-R18 therapy.

Pluri hopes that the approval would make it eligible for purchase by the US Strategic National Stockpile — the country’s repository of critical medical supplies — as a medical countermeasure for exposure to nuclear radiation.

The Technion is the only Israeli university in the top 100 and ranks 89th worldwide

The U.S. National Academy of Inventors (NAI) has ranked the Technion – Israel Institute of Technology  first in Israel and second in Europe for the number of U.S. patents approved in  2024, with 43 patents registered last year. The Technion is the only Israeli university on this prestigious list, placing 89th globally.

Rona Samler, general manager of T3 – the Technion’s commercialisation unit, stated:

“I am extremely proud of our ranking among the world’s top 100 universities and our first-place standing in Israel for the fourth consecutive year. This recognition is a testament to the excellence of Technion researchers in scientific and engineering innovation and the institution’s strength in translating ideas into research and research into world-changing technologies. This is one of the key ways the Technion makes a lasting impact on society and the economy.”

Patent registration in the U.S. enables academic institutions to transform groundbreaking technologies into competitive global products, significantly benefiting consumers and industries worldwide.

Dr. Paul Sanberg, president of the NAI, emphasised: “By recognising this crucial step in the commercialisation process, we highlight the role of intellectual property in benefiting inventors and institutions while encouraging the development of technologies with a potentially significant societal and economic impact.”

The NAI ranking is based on data from the United States Patent and Trademark Office (USPTO) for 2024 and includes 100 institutions and 9,600 patents.

Israel’s oldest university is playing an integral role in tearing down walls between academia and business, helping the so-called “Startup Nation” better compete in future-facing industries at a time of rapid technological change. 

Technion — Israel Institute of Technology was founded in 1924, 24 years before the establishment of Israel, on the idea that if a Jewish state were to come into existence, it would first need technical expertise to develop the country. 

Most of Israel’s railroads, highways and bridges were designed and built by Technion grads, along with its advanced telecom infrastructure, desalination plants and electrical grid. Chip design, aerospace engineering and optoelectronics all have a home in the university, which awards about 30 percent of all Israel’s engineering undergraduate degrees and half of its Ph.Ds. Pioneering work in micro-electronics started at the Technion, and innovations like the Iron Dome air-defense system were developed by alumni.

“The impact is really unparalleled,” said Uri Sivan, president of the Technion, during a visit to Atlanta along with startups from Drive TLV, a mobility incubator in Tel Aviv. 

But that competitive edge is at risk for all universities that keep their inventions locked in ivory towers and fail to keep up with the adapting needs of companies. 

“I believe that universities … need to reposition themselves, or in a sense they’re going to become somewhat irrelevant,” he told a group of entrepreneurs and corporate development executives during a keynote at Curiosity Lab in Peachtree Corners. 

He pointed to a fundamental shift taking place at the nexus between education and practice. This “changing interface” requires educators to be nimble and open to new modes of collaboration, said Dr. Sivan, an expert in physics and nanotechnology.

“When I studied 40 years ago there was a clear dividing line — basic research done at the university and applied research in industry; academic degree at the university, training in industry. This line is completely blurring,” Dr. Sivan said.

This started in computer science with companies like Google and Microsoft, but it’s happening today in a wider variety of fields like AI and quantum computing, where companies are often the ones driving primary research forward. 

Universities, for their part, are also working more intently on how their research can address real-world problems. The Technion spins out about 15 companies per year, and the university has learned to embrace commercialization while remaining committed to its primary role of education, Dr. Sivan said.

As spinoffs increase by a factor of three to five per year, the question has become how to keep faculty engaged while also enabling them to explore ways to capitalize on their research.  The university already allows faculty to consult one day a week for companies and take leaves of absence of up to four years. 

“Very few don’t come back,” he said.  

He pointed to the Dyson Institute in England as a new model for integrating work and study.

While it’s accredited to grant engineering degrees, students also spend much of their time working directly for the vacuum and electronics innovator. 

“Students don’t pay tuition — zero tuition. They spend half the week in the company hub, doing research … and they get a salary. So you can see that this is a disruptive event for academia.” 

One solution for the Technion has been to invite innovators on-campus to create an optimal blend of theory and practice. PTC, a Boston-based software company that helps manufacturers simulate not only the physical design of their parts but also their thermal and electronic properties. 

“They moved a body of about 100 researchers moved into our campus, and they’re completely integrated now into our academic system. So their researchers take part in teaching, they take part in mentoring students, mentoring graduate students, and they actually built some research facilities that are now available to all researchers on campus,” Dr. Sivan said. 

The approach echoes that of Georgia Tech, which has been a magnet for corporate innovation centers in Midtown’s Tech Square. Dr. Sivan had meetings at the university during his Atlanta trip, soaking in the atmosphere of a growing tech hub. 

“There is an entrepreneurial spirit in the air. That’s where we would like to be,” he said. 

Technion has also created a new academic position that serves as a reciprocal of the common practice of professors acting as consultants for industry.

With Research Associates From Industry, business leaders with knowhow in critical sectors spend a day or two per week in the university setting, working with students directly and integrating into research projects. 

In a university with 600 faculty, some 60 associates have already joined, including Intel chip designers that are providing greater depth to existing courses. Meanwhile, they gain access to students and cutting-edge knowledge. 

“They’re exposed to research which is more blue-sky than what they do in their companies,” Dr. Sivan said. 

Capitalizing on Constraints

Israel is not new to seeding the links between researchers and entrepreneurs. The Israel Innovation Authority has long funded such initiatives, and in 1977, the country worked with the U.S. to establish the BIRD Foundation to underwrite joint innovation between U.S. and Israeli companies. The effort has led to 16 joint projects involving Georgia firms as recently as 2021. 

Dr. Sivan told Global Atlanta in an interview facilitated by the American Technion Society that Israel reached a “tipping point” in its innovation ecosystem years ago, in part because it has had to operate with constraints on funding and a small internal market that has force companies to look outward for growth and investment.

“You need necessity and you need constraints: If you have unlimited sums of money, and you don’t really have particular necessities, you don’t have to be creative,” he said. “Being a small country under constant stress from the outside, with limited resources and so on, I believe, drives people to innovation.”

Dr. Sivan said he would like to see the Technion deepen its institutional collaboration with Georgia Tech and added that he explored the idea during a meeting with his counterpart there, President Angel Cabrera. 

His speech during the Drive TLV event was followed by a panel on 2035: Shaping the Next Decade of Mobility with representatives from Honda Innovations, Wheels LLC and 19Y Advisors. Atlanta-based Cox Automotive and Novelis are partners in Drive TLV. 

Pitches followed from the latest (10th) batch of Drive TLV Fast Lane accelerator startups:

  • Arbell Energy Ltd. 
  • Deontic
  • dataspan.ai
  • Monogoto 
  • NUGEN 
  • Whilx Technologies

Unlike artificial language models, which process long texts as a whole, the human brain creates a “summary” while reading, helping it understand what comes next.

In recent years, large language models (LLMs) like ChatGPT and Bard have revolutionized AI-driven text processing, enabling machines to generate text, translate languages, and analyze sentiment. These models are inspired by the human brain, but key differences remain.

A new Technion-Israel Institute of Technology study, published in Nature Communications, explores these differences by examining how the brain processes spoken texts. The research, led by Prof. Roi Reichart and Dr. Refael Tikochinski from the Faculty of Data and Decision Sciences. It was conducted as part of Dr. Tikochinski’s Ph.D., co-supervised by Prof. Reichart at Technion and Prof. Uri Hasson at Princeton University.

The study analyzed fMRI brain scans of 219 participants while they listened to stories. Researchers compared the brain’s activity to predictions made by existing LLMs. They found AI models accurately predicted brain activity for short texts (a few dozen words). However, for longer texts, AI models failed to predict brain activity accurately.

The reason? While both the human brain and LLMs process short texts in parallel (analyzing all words at once), the brain switches strategies for longer texts. Since the brain cannot process all words simultaneously, it stores a contextual summary—a kind of “knowledge reservoir”—which it uses to interpret upcoming words.

In contrast, AI models process all previously heard text at once, so they do not require this summarization mechanism. This fundamental difference explains why AI struggles to predict human brain activity when listening to long texts.

To test their theory, the researchers developed an improved AI model that mimics the brain’s summarization process. Instead of processing the entire text at once, the model created dynamic summaries and used them to interpret future text. This significantly improved AI predictions of brain activity, supporting the idea that the human brain is constantly summarizing past information to make sense of new input.

This ability allows us to process vast amounts of information over time, whether in a lecture, a book, or a podcast. Further analysis mapped brain regions involved in both short-term and long-term text processing, highlighting the brain areas responsible for context accumulation, which enables us to understand ongoing narratives.

Prof. Shai Shen-Orr of the Ruth and Bruce Rappaport Faculty of Medicine showcased his lab’s trailblazing efforts in harnessing computational tools and innovative methodologies to redefine our understanding of the immune system. A leading immunologist and director of the Zimin Institute of AI Solutions in Healthcare at the Technion and the new Technion Institute for Healthy Aging, his work spans from developing metrics like “immune age” to spearheading global health projects, promising transformative implications for medicine.

Immune Age and Predictive Medicine

One of Prof. Shen-Orr’s standout contributions is the concept of immune age, a metric that quantifies the immune system’s state. This marker has shown predictive power for various health outcomes, including cardiovascular disease, paving the way for early diagnosis and intervention.

“Your immune system is a learning system,” Shen-Orr explained, emphasizing how the immune system evolves over time and adapts to environmental challenges. “By understanding an individual’s immune age, health care providers can better predict and manage potential health issues, leading to more personalized and effective treatments.”

Developed using advanced mass cytometry and machine learning, this metric represents a leap in precision medicine, shifting the focus from general health indicators to immune-specific markers.

Bridging the Data-Insight Gap With AI

Prof. Shen-Orr’s research tackles a critical bottleneck in biomedical science: the gap between vast amounts of data and actionable insights. He has pioneered computational disease models that leverage artificial intelligence to improve drug development efficiency. For example, his lab’s algorithm, “Found in Translation,” enhances the predictability of findings from animal models, like mice, to human systems by up to 50%. “We train the computer system to learn the difference between a mouse and a human,” he said.

“Most drugs fail during development. It costs about $2.5 billion to bring a single drug to market, primarily because of failed trials. By improving the translational accuracy between species, we can reduce time, cost, and animal use significantly.”

The Human Immunome Project: A Global Collaboration

One of his most ambitious initiatives, Shen-Orr is co-chief science officer of the Human Immunome Project. This global nonprofit aims to map baseline immune variations across populations, genders, and geographic regions, addressing a fundamental gap in immunological research. The project holds the potential to revolutionize vaccine development and personalized immunotherapies by understanding how different immune systems respond to treatments.

An example that underscores this need is the malaria vaccine. While it demonstrated over 90% efficacy in trials conducted in the U.S., its effectiveness dropped to less than 20% in African populations, a disparity attributed to baseline immune variations.

“We’re at a singularity moment in immunology,” Shen-Orr said. “The tools to measure the immune system comprehensively, along with AI capabilities, have matured. Now is the time to leverage them for global impact.”

From Academia to Real-World Applications

The Technion’s emphasis on translational research is evident in Shen-Orr’s dual roles as an academic leader and entrepreneur. He co-founded CytoReason, a company that integrates AI-driven disease models into pharmaceutical research and development. The platform has already gained traction with leading industry players like Pfizer and Sanofi, demonstrating its potential to streamline drug development and reduce costs.

Moreover, his collaboration with other Technion researchers is pushing the boundaries of innovation. For instance, partnerships exploring the impact of diet on immune health are underway, aiming to create tailored nutritional solutions for aging populations.

Shen-Orr also advocates for equipping biologists and clinicians with computational and data science skills to harness the explosion of data in immunology. The Technion’s curriculum now incorporates quantitative thinking from the first year of medical school, preparing future physicians to engage with cutting-edge technologies.

Looking Ahead

Prof. Shen-Orr’s work exemplifies the Technion’s commitment to groundbreaking science with tangible societal benefits. By bridging biology, AI, and global collaboration, his research not only advances our understanding of the immune system but also lays the foundation for a future where medicine is predictive, personalized, and precise.

His collaborative efforts with institutions like Stanford University and the National Institutes of Health aim to deepen our understanding of immune health and develop new diagnostic tools and therapies. “We are studying the effects of the environment and pollution on immune health,” for example.

As he puts it, “We’re moving toward a world with less trial and error and more informed decisions in medicine. The immune system, with all its complexity, is the key to unlocking this future.”

From predictive medicine to global health initiatives, Shen-Orr’s work is paving the way for a deeper understanding of the immune system and its applications in improving human health. As the field continues to evolve, the Technion remains at the cutting edge, driving innovation and collaboration in immunology research.

What if the digital world offered not just sight and sound but also the ability to feel?

Imagine a future where technology allows us not only to see and hear each other from great distances but also to feel  – examining a sick patient or tucking in a grandchild from across the globe. Techion Professor Lihi Zelnik-Manor is on a mission to hone technologies that will realize these possibilities.

“I love thinking about the applications of technologies that simulate the sensation of touch: providing medical professionals with new tools, helping people who are blind, and even enabling family members to virtually touch one another across geographical distances,” she says. “The extraordinary promise of such technologies motivates my work.”

The challenge of simulating touch — especially textures — is decades away from full realization. Currently, haptic systems, systems that relate to the sensation of touch, rely on simple vibration motors to simulate touch. These motors are used to provide sensory feedback in devices like haptic gloves or robotic arms, which allow users to “feel” when they grip an object. However, when it comes to simulating detailed textures like the roughness of concrete or the smoothness of fabric, the technology has been limited.

Prof. Zelnik-Manor is working on new innovations that aim to replicate the tactile experience of touching real-world textures. In one experiment, she and her team built a tablet with air pressure systems, which resembled an air hockey table, to simulate tactile feedback and explore the possibility of conveying images to blind individuals through touch. The project faced challenges as the team ultimately realized that humans struggle to understand complex spatial layouts through touch alone. Nonetheless, the experiment provided valuable information about haptic technology.

In a more promising recent experiment, Prof. Zelnik-Manor aimed to create a small device that resembled a computer mouse which could provide tactile feedback for users to recognize textures — a “haptic mouse” with an array of vibrating pins. The pins simulate various textures by stimulating the finger in a way that mimics the sensation of touching real surfaces. The device capitalizes on the brain’s ability to reconstruct textures as users move their fingers across the pins.

The device was tested against real-world 3D-printed materials, and results showed that while the device was not as accurate as physically touching the materials, it was still effective. In the experiment, participants were able to recognize textures with 86% accuracy using the haptic device, compared to 97% accuracy with the 3D-printed surfaces. The recognition process was slower with the device, taking around two minutes versus one minute with the 3D prints. Despite these limitations, the experiment demonstrated the potential of virtual haptic feedback for texture recognition, moving beyond basic tactile tasks to more complex real-world textures.

One of the most exciting applications of haptic technology lies in medicine, particularly in laparoscopic surgery. Surgeons currently rely on visual feedback to differentiate between healthy and unhealthy tissue. If haptic feedback could be integrated into surgical tools, doctors could “feel” the difference between tissues, improving precision and reducing errors. This advancement could be a game-changer in procedures like tumor removal or organ surgery.

The future of touch is just beginning to unfold. As research progresses, the digital world will become more immersive, offering not just sight and sound but also the ability to feel. Though such progress will take decades to achieve, Prof. Zelnik-Manor believes the charge fits squarely within the realm of academia and the mission of the Technion.

“To work on problems whose solutions lie 20 or 30 years in the future, this is the domain of academia,” she says. “While industry is driven to tackle problems with more near-term results, we as Technion researchers have the challenge and privilege of working on deeper, more complex mysteries.”

Technion plays a crucial role in Israel’s infrastructure, security and economy. Industries in which it has made life-changing advancements include energy, water and healthcare, and it’s impossible to look at the diverse student body, 20 per cent of whom are Arab, and not feel hope.

There’s a saying – conveyed in many ways – that to love another, one must first love oneself. Given, then, that the very foundation of Israel hinged on the Technion – Israel Institute of Technology, it is no wonder that the country loves it so.

Described as the technological backbone of the country even before its establishment – expressed by the New York Times quite perfectly as “Israel’s hard drive” – the Technion was crucial in the infrastructure, security and economy necessary for the state’s survival, and without which it would simply not exist today.

Set up decades before the state of Israel was established through the prism of Zionism by visionaries including Israel’s first president, Chaim Weizmann, and Theodor Herzl, it was understood that if the country was not only to survive but to thrive, it needed to invest in science and technology. A Jewish state alone would never be enough; it needed to benefit the entire world, starting with the local Arab population – more on this soon.

Rapid progress in biotechnology, drug development, and stem-cell technology.

For before anything else, without the means to defend itself, Israel could not survive, let alone make advancements in any other area. Fortunately, the Technion’s role in the country’s security is no less prevalent today than it was in the years leading up to and immediately after the state’s establishment. Missile defence systems, such as the remarkable Iron Dome developed by Technion alumnus Chanoch Levin that has saved thousands of lives and, most recently, David’s Sling and Iron Beam, as well as underground tunnel detection devices and drone technology, are just a few examples of the role the Israel Institute of Technology has supported in the protection of Israel and its citizens, through a plethora of disciplines offered at the university such as aerospace, engineering and computer science.

In this area the Technion has form; on March 17, 1948, just two months before Israel’s founding, the Haganah recruited physics and chemistry students from the university, among others, to Givatayim, where a radar detection unit was set up. Similarly, it continues to play a pivotal role in securing the country and its people, most recently in the ongoing war since October 7. There are too many examples to list, but they include some 3,000 students – 21 per cent of the student body – being called up as reservists and supported by the university with financial, psychological and educational help. Others include the Faculty of Medicine’s transformation of what usually functions as a car park in peacetime to a 2,000-bed fortified underground hospital and the establishment of the “Give Help, Get Help” scheme, which has been responsible for hosting dozens of internally displaced people, opening schools on campus for Technion staff children, clearing out bomb shelters, baking challah, organising blood drives, giving haircuts to soldiers and donating packages.

Companies including Google, Microsoft, IBM, Qualcomm, Yahoo!, Hewlett-Packard and others have established their operation near or even on campus, where they can take advantage of the Technion’s research power and outstanding graduates.

It’s because of all this that the Technion has also been able to live up to the nickname of “the Startup Nation”. According to Stanford Graduate School of Business research, the Technion is 25 times more likely to produce a US-based unicorn startup than any other non-US university. Industries in which the institute has made life-changing advancements include energy, water and health (with groundbreaking inventions such as the PillCam – a tiny, wireless, capsule-encased camera the size of a jelly bean and small enough to be swallowed, which hundreds of UK hospitals are using – and novel drug Rasagiline to treat Parkinson’s disease, approved by the American Food and Drug Administration in 2006).

Yet perhaps we need only look closer to home when we answer why Israel loves the Technion. Circling back to our earlier point of how the Israel Institute of Technology benefits not only the Jewish people but its Arab population, too, it’s impossible to look at the diverse makeup of the student body, 20 per cent of whom are Arab, and not feel an overwhelming sense of hope for the future.

It’s clear that the Technion feels exactly the same about Israel as Israel feels about the Technion, and there’s nothing quite like requited love, is there?

Proteins, the pillars of cellular function, often assemble into “complexes” to fulfill their functions. A study by the University of Geneva (UNIGE) and the Weizmann Institute, in collaboration with the Technion, reveals why this assembly often begins during the very process of protein synthesis or “birth.”

These early interactions involve proteins whose stability depends on their association. They can be compared to a couple in which each partner supports the other. This model paves the way for new strategies to understand and correct assembly errors, which are often associated with pathologies, including neurodegenerative disorders and certain cancers. The findings are published in the journal Cell.

Proteins are large molecules composed of a chain of amino acids. They are produced by the ribosome, a cellular “machine” that reads the instructions contained in messenger RNAs. Once the protein is formed, interactions between the amino acids induce the chain to fold onto itself and adopt a specific structure. While some proteins function independently, many must assemble with specific partners into complexes to fulfill their roles.

The formation of these complexes is a delicate process. If proteins fail to find their partners or fold incorrectly, this can lead to cellular dysfunction and pathologies such as Alzheimer’s disease or certain cancers. Until very recently, scientists believed that proteins only formed complexes after being fully synthesized (post-translational assembly).

However, the recent study revealed that assembly between nascent proteins—co-translational assembly—is widespread. This study identified thousands of proteins involved but did not determine the specific pairs of proteins formed or the molecular signatures underlying this early recognition.

Thousands of protein structures analysed

The group led by Emmanuel Levy, a full professor in the Department of Molecular and Cellular Biology at the UNIGE Faculty of Science—previously a professor at the Weizmann Institute—in collaboration with the group of Ayala Shiber, a professor at the Technion, focuses on the fundamental principles governing protein self-organization. In other words, these scientists aim to identify the general rules of protein assembly.

For this study, the team analyzed a list of proteins involved in co-translational assembly. By comparing their structures to those of proteins that assemble after translation, they were able to establish fundamental differences between these two mechanisms

“Our bioinformatics analyses revealed that proteins interacting with their partners while still being synthesized tend to be unstable when isolated. These proteins depend on their partners and if they do not find it, they adopt a wrong shape and get degraded,” explains Saurav Mallik, a researcher at the Weizmann Institute and co-first author of the study.

A predictive model

“Using this approach, we developed a model based on a large corpus of structural data, using both experimentally determined structures and those predicted by the artificial intelligence software AlphaFold. Our model leveraged structural properties of a complex to predict whether it associated co- or post-translationally,” add Johannes Venezian and Arseniy Lobov, co-first authors of the study. The scientists notably discovered that binding sites are exposed early in these proteins, enabling them to interact with their partner shortly after emerging from the ribosome.

These predictions were validated using experimental data focused on several proteins. “These findings pave the way for a better understanding of protein assembly within cells and highlight the global impact of protein structure on the regulation of their synthesis,” says Levy.

Many diseases, including neurodegenerative disorders and certain cancers, are linked to misfolded proteins or defective complexes. By understanding the rules of co-translational assembly, scientists could develop strategies to prevent these errors and design new therapeutic approaches to correct them.

What if we could provide groundbreaking accessibility solutions to people with disabilities?

How can technology be harnessed to offer unique solutions to people with disabilities? The Technion has designed a new course to empower students to do just that through social-technological entrepreneurship. Open to all Technion students as well as University of Haifa physiotherapy students, the course fosters interdisciplinary collaboration to address real-world challenges.

Students will explore topics such as accessibility, the psychology of people with disabilities, and principles from biomedical engineering, physiotherapy, and occupational therapy. Visits to Loewenstein Rehabilitation Hospital and Sheba Medical Center will provide firsthand insights into rehabilitation needs, enriching the learning experience.

Dr. Yacov Malinovich, the course leader, highlighted its timely significance: “Awareness of the needs of disabled people has increased, and this has become even more important in light of the ongoing war. Developing suitable technologies for rehabilitation offers students and engineers an opportunity to directly improve people’s well-being. Israel has extensive knowledge in this field, with examples like unique wheelchairs, emergency bracelets, and special surfboards.”

Dr. Malinovich, a founder of Haifa3D, brings expertise in designing assistive devices for individuals with upper limb disabilities. Haifa3D’s impactful work includes creating robotic hands for children and collaborating with the Technion’s Biorobotics and Biomechanics Lab to develop customized solutions.

“The new course will feature guests from various academic and rehabilitation institutions,” explained Dr. Malinovich. “By connecting with rehabilitation centers and individuals with disabilities, we aim to create technological solutions that truly assist those in need. Each student team will submit a product as their final project.”

Held in the Faculty of Mechanical Engineering, the course is a collaboration between t:hub – the Technion Innovation and Entrepreneurship Hub, the University of Haifa’s Physiotherapy Department, and the Technion Social Incubator. Offering six academic credits, it provides students with hands-on experience to develop innovative solutions that can transform lives.

In the time it takes to read this article, several people in the United States will likely experience a heart attack — according to the CDC, someone in the US suffers from one every 40 seconds.

That morbid statistic highlights the importance of coronary artery disease detection methods, and companies developing them.

One such company is Israeli startup AccuLine, which recently secured $4.2 million in seed funding for the development and commercialisation of its CORA (Coronary Artery Risk Assessment) system, designed to improve the early detection of coronary artery disease (CAD), a leading cause of heart attacks.

CORA detects two bio-signals in the heart’s electrical activity, providing insights into coronary artery health. The system uses artificial intelligence and machine-learning algorithms to analyse this data, identifying patterns that may indicate CAD.

The CORA assessment improves upon current CAD diagnostic tools by means of a noninvasive, radiation-free test that evaluates three vital signs — the heart’s electrical activity, oxygen saturation levels and respiratory phase — in four minutes.

The system is designed to be operated by medical staff in various healthcare settings, with immediate results. By potentially replacing some existing stress test examinations, CORA could reduce medical expenses while maintaining diagnostic accuracy.

AccuLine, based in Petah Tikva, estimates the market potential for the technology at $7 billion annually in the United States.

The company has conducted two clinical studies in Israel to validate CORA’s diagnostic capabilities. The first involved 100 participants, while the second, larger study included 300 participants across seven medical centers. A third study is planned for next year in the US to seek US Food and Drug Administration (FDA) approval.

“Diagnosing patients at very early stages of risk for CAD without invasive testing will add value to patients, healthcare systems, doctors and insurance organisations,” said AccuLine cofounder and CEO Moshe Barel.

“This test has the potential to save millions of lives a year and save hundreds of millions of dollars for healthcare systems on unnecessary tests or expensive treatments for patients after a heart attack, including rehabilitation and medication.”