A new interdisciplinary study by researchers from the Ruth and Bruce Rappaport Faculty of Medicine and the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering at the Technion reveals a surprising insight: local release of dopamine—a molecule best known for its role in the brain’s reward system—is a key factor in acquiring new motor skills

From writing and typing to playing a musical instrument or mastering a sport, learning movement-based tasks is one of the brain’s most complex challenges. This collaborative new study reveals how the brain reorganizes its neural networks during such skill learning and uncovers the vital role of dopamine in this process of motor learning.

The research, published in Nature Communications, was led by Dr. Hadas Benisty, Prof. Jackie Schiller, and M.D./Ph.D. student Amir Ghanayim, with contributions from Prof. Ronen Talmon and student Avigail Cohen-Rimon from the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering.

The ability to acquire new motor skills is fundamental for adapting to our environment. This learning takes place in the primary motor cortex—a region of the brain responsible for planning and executing voluntary movements. From this cortical “command center,” signals are sent via the spinal cord to activate muscles and coordinate movement. Neural activity in this region is known to change as we learn new skills. However, the mechanisms that drive these changes remain unclear.

Key findings of the study

The researchers used advanced calcium imaging in behaving mice and chemogenetic inhibition techniques—engineered receptors and specific drugs—to temporarily switch off targeted brain cells, allowing researchers to study their function. They mapped dynamic changes in neural networks with cellular resolution within the motor cortex during the acquisition of a motor skill, and discovered that during learning, neural networks transition from a “beginner” to an “expert” structure.

Crucially, this process depends on the local release of dopamine in the motor cortex. Under normal conditions, dopamine molecules are delivered to this region by neurons originating in the ventral tegmental area (VTA)—a central dopamine hub in the brain. The researchers hypothesized that this dopamine release triggers plasticity mechanisms, leading to changes in functional connectivity between neurons in the motor cortex. This process enables motor learning by storing new skills for future use. In essence, this is a form of reinforcement learning, where successful movement outcomes reinforce the brain’s internal wiring.

What happens when dopamine is blocked?

To test the necessity of this mechanism, the researchers examined both the activity and functional connectivity of the neural network and the learning process when dopamine release in the primary motor area was blocked. The results were clear: When dopamine was blocked, learning stopped completely—mice were unable to improve their performance in a forelimb-reaching task. The motor cortex neural network remained static. However, as soon as dopamine release was restored, learning resumed, along with reorganization of the neural network.

The study provides compelling evidence that local dopamine release serves as a crucial signal for neural plasticity in the motor cortex, enabling the necessary adaptations for producing precise and efficient motor commands. A particularly interesting discovery was that blocking dopamine did not affect previously learned motor skills. In other words, the researchers proved that dopamine is essential for learning new movements but is not required for performing already learned ones.

This study represents another step toward understanding brain plasticity and learning mechanisms at the cellular and network levels. It highlights the brain’s ability to reorganize itself, allowing us to refine our motor skills throughout life. These insights may also have important implications for treating neurological disorders such as Parkinson’s disease, where dopamine production is impaired, and motor learning is compromised.

Medical robotics first entered general surgery in the 1980s with laparoscopic tools that enabled minimally invasive procedures, reducing incision size and recovery time. These early systems extended surgeons’ capabilities, transforming the surgical landscape.

Today, artificial intelligence (AI) is ushering in a new era of precision and control in the operating room. Yet despite this progress, robotic systems remain limited to select procedures, leaving most surgeries dependent on traditional methods — and many patients without the benefits of enhanced consistency and outcomes.

As medical technology continues to evolve, how can AI applications in surgical robotics scale to transform healthcare on a broader level?

Fueled by increased robotic VC funding and the digital transformation of the last five years, the robotics industry is seeing fast-tracked market results with no signs of stopping. Earlier this year, Nvidia announced its intent to increase investments in its robot development, signaling a positive shift for the future of robotics. Similar investments in robotics by large-scale players will further advance robotic technology through data collection and machine learning, while providing additional resources and insights.

Surgical robotics industry leaders, such as Intuitive Surgical, Medtronic, and Stryker, have pioneered robotic-assisted surgeries for various procedures. Since introducing its da Vinci system for general surgery in 2000, Intuitive Surgical has continued to iterate its robotic platform to expand its offerings to cardiac, bariatric, gynecology, and thoracic surgeries, among others. With the mass adoption of robotic-assisted surgeries, surgical robotics have consistently been adopted at a faster scale. Between 2012 and 2018 alone, robotic-assisted procedures rose 738% in general surgery.

Looking ahead, surgical robotics have even greater market potential, and are predicted to grow to over $14 billion by 2026 – up from just over $10 billion in 2023. This is mainly due to greater access to robotic surgery procedures, advancements in automation and digital technologies, and new players who aim to deliver cutting-edge medical solutions that harness the power of AI.

Deep Tech Approach

Built on the intersection of disciplines, deep tech merges multidisciplinary technologies such as AI, quantum computing, biotechnology, and robotics to usher in a new era of technology. Startups embracing a deep tech approach in robotic surgery are creating innovative solutions for the future, as can be seen in healthtech development, which can improve patient access to critical medical care. With deep tech development, surgical procedures may become fully automated down the road, requiring minimal surgeon assistance and significantly expanding access to treatment.

Emerging deep tech technologies in surgical robotics can make a lasting global impact. With roughly two-thirds of the worldwide population – 5 billion people – lacking access to surgical treatment, these new modalities, powered by AI, can expand general access and close the surgical care gap.

Fusing AI and Surgical Robotics

AI has innovated and changed how we interact with different technologies and each other. Over the last five years, the transformation brought on by AI has accelerated the development of robotics and created additional applications for AI within different modalities, including robotic surgery.

Here are three essential ways AI is making a fast and profound impact:

1. Embodied AI

Technology is changing how we interact with our environment and the people around us. Embodied AI, which includes autonomous vehicles and humanoid robots, is the fusion of AI with physical systems to execute complex tasks in real-world settings. When embodied AI is applied to surgical robotics, it has the potential to have long-lasting impacts on enhancing surgical care and improving existing techniques. However, embodied AI requires significant real-world data to develop training simulation models, which are used to train and expand AI capabilities and improve data-driven insights. Until recently, access to large amounts of training data has been somewhat limited; however, as the industry continues to invest in the training and development of AI models, the simulated data pools are growing at a quicker pace and improving embodied AI functionality.

2. Continuous Data Insights and Guidance

AI-based systems can absorb and comprehend large swaths of information in seconds – much faster than the human brain. By training machines on large data sets, data-driven insights can inform surgical decisions before surgeons even set foot in the OR. AI-driven training simulations can significantly benefit surgeons, as training on data sets that are based on thousands of surgeries provide surgeons with trends and techniques to deliver a better patient experience, and also allow them to prepare for and understand the intricacies of rare or complex cases before they face them in the OR. This process can significantly accelerate and shorten the long learning curve surgeons face when training to reach peak surgical performance.

When applied to real-time imaging and visualization technologies, AI-driven data can also enhance surgeons’ decision-making capabilities during operations. By providing surgeons with insights to adjust surgical plans during procedures, AI-based systems can empower surgeons to optimize techniques and approaches in real-time. Through AI-driven imaging systems, surgeons can receive advanced imaging analytics and real-time 3D “maps” of the surgical sites. These augmented overlays can give surgeons expanded insights into the surgical field alongside real-time feedback on their surgical techniques. Robotic surgery platforms are at the forefront of integrating this technology into the OR, with the goal of increasing surgical precision and outcomes.

Furthermore, by providing ongoing feedback post-operation, AI-based systems can provide valuable feedback to surgeons about their performances during procedures – highlighting weaknesses and strengths, and suggesting specific strategies on how to improve them. Such platforms can also recommend new treatment plans based on each patient’s history and the particular procedure’s data analysis, and empower surgeons with additional information that can enhance further treatment. As such, AI platforms have the potential to absorb and adapt surgical feedback throughout the full surgical cycle (before, during, and after) through an AI feedback loop to increase surgeons’ precision and performance.

3. Increased Accuracy and Precision

Individual surgical skills often vary among surgeons due to their access to top-tier opportunities, from program location to surgical mentorship access. For instance,  the field of ophthalmology has a steep learning curve. On average, it takes at least 15 years of training and surgical experience to reach peak performance as an ophthalmic surgeon. With a growing aging population and a dwindling number of surgeons, a new solution is needed to reduce the surgeon’s training period and standardize the accuracy and precision of care for all.

In addition to reducing the learning curve for surgeons and allowing them to reach peak performance faster, introducing AI-based platforms into the surgical process can increase accuracy and precision and may improve suboptimal outcomes. Semi-autonomous and increasingly autonomous features in robotic platforms can eliminate the surgeon’s natural hand tremor and improve overall precision and accuracy, thus improving clinical outcomes. In addition, the ability of AI-based systems to recognize unique anatomical structures and provide the exact location for incisions and other surgical steps – especially in complex procedures or anatomical areas – can significantly reduce the rate of surgeon errors by improving spatial awareness of anatomical structures. As such, all surgeons utilizing AI-based systems will be able to provide consistently more precise care.

When incorporated into the surgical process, AI-based robotic platforms provide invaluable insights that can enhance the overall experience for both the patient and the surgeon.

Conclusion

AI will continue to play a significant role in advancing healthcare in the future. Incorporating advanced AI technologies into our healthcare services, such as electronic filing, diagnostics, and health monitoring and tracking, as well as surgical care, is imperative. In doing so, we can improve the overall patient and surgeon experience.

In robotic surgery, AI  is expediting the technology’s transformation and patient access to consistent, high-tier treatment. Advancements in robotics, coupled with AI and automation, will continue to usher in new applications, creating a higher level of standardised care and launching healthcare quality and access to new heights.

Technion team discover proteins in human breast milk can help deliver sensitive medical compounds, such as vaccines and insulin, through digestive system into bloodstream

Technion Prof. Assaf Zinger is working to make medications and vaccines more accessible by allowing people to take them in liquid form rather than by injection. The concept is based on how breastmilk delivers sensitive compounds directly into the bloodstream via the digestive system, which his team aims to replicate. They plan to combine nanoparticles and breast milk proteins, which they believe could develop into “taxis” to transport drugs, vaccines, and other vital compounds into the bloodstream. Such a breakthrough could help prevent and treat conditions such as inflammation, diabetes, infections, cancer, and malnutrition, significantly improving patient care, particularly for those with chronic or acute illnesses. Their study was recently published in the Journal of Controlled Release.

Imagine a world where antibodies, proteins such as insulin, and even COVID-19 and flu vaccines could be consumed orally instead of injected. This vision is closer than ever. The fundamental idea is to make medications and vaccines more accessible by allowing people to take them in liquid form rather than by injection.

The inspiration for this research came from home—literally. Dr. Asaf Singer, a researcher at the Technion-Israel Institute of Technology, observed his wife, Noa, breastfeeding their two daughters. He wondered how breast milk could naturally deliver so many essential substances to infants. 

The deeper he delved into the topic, the more he realized that breast milk is far more than just nutrition—it is a sophisticated biological transport system capable of something that medicine has long struggled with: delivering sensitive compounds directly into the bloodstream via the digestive system. This is exactly what his research team aims to replicate.

Their study was recently published in the Journal of Controlled Release under the title: “Harnessing the Potential of Human Breast Milk to Enhance Intestinal Permeability for Nanoparticles and Macromolecules.” Conducted in collaboration with two Technion faculties, the research highlights the importance of interdisciplinary cooperation.

The Secret of Breast Milk

Breast milk is a remarkable fluid containing a wide range of essential components. To affect an infant’s health, these substances must pass from the digestive system into the bloodstream. This requires crossing biological barriers, including the intestinal barrier—a large membrane separating the inside of the gut from the circulatory system. The body typically distinguishes between beneficial and harmful substances, which is why some oral medications fail to reach their intended targets. However, breast milk contains special proteins that “convince” the body to let them pass.

Doctoral student Si Naftaly, who co-led the study with Singer, posed a crucial question: If substances in breast milk can cross this barrier, then the milk must contain “keys” that enable them to do so. What are these keys? To investigate, the researchers compared human breast milk, cow’s milk, and infant formula. Breast milk demonstrated the highest permeability through the intestinal barrier.

To conduct the research, a significant supply of breast milk was needed. Due to the October 7 attack and its aftermath, breast milk donations in Israel were directed toward orphans. As a result, the research team turned to mothers at the Technion to collect donations for the study.

How Does It Work?

The study uncovered a key mechanism: a natural protein coating from breast milk, termed Human Breast Milk Protein Corona, which facilitates the passage of nanoparticles (ultra-small particles) through the intestinal wall. This discovery was confirmed in both human intestinal cells and pig intestines, which closely resemble human digestive physiology.

Breast milk serves as the primary, and sometimes only, source of nutrition for infants. It is a complex and dynamic liquid that adapts to a baby’s needs, supplying enzymes, growth factors, hormones, antibodies, nucleic acids, extracellular vesicles, carbohydrates, lipids, vitamins, minerals, proteins, and cells. These components are crucial for the development of various bodily systems. Unlike infant formula, which is uniform in composition, breast milk varies based on numerous factors related to the mother. Awareness of its medical value has grown in recent years, and it is now recognised as a natural remedy for various diseases, particularly those affecting the intestines.

The study provides a solution for delivering nanoparticles and molecules from the digestive system to the bloodstream. Based on these findings, the next step is an engineering and applied research phase—developing nanoparticles that mimic this mechanism, ensuring their successful passage through the intestinal barrier. These nanoparticles could carry various medical payloads, including RNA vaccines, proteins, and contrast agents for imaging. Their protective properties help shield medical compounds from the harsh conditions of the digestive system, making them a promising drug delivery method.

What Does This Mean for the Future of Vaccines?

By combining two natural elements—nanoparticles and breast milk proteins—the researchers believe they can develop tiny “taxis” to transport drugs, vaccines, and other vital compounds into the bloodstream. This concept could revolutionize medicine by replacing injections with orally administered treatments. Such a breakthrough could help prevent and treat conditions such as inflammation, diabetes, infections, cancer, and malnutrition, significantly improving patient care, particularly for those with chronic or acute illnesses.

The study was led by Dr. Asaf Singer and doctoral student Si Naftaly, along with Prof. Maya Davidovich-Pinhas from the Faculty of Biotechnology and Food Engineering at the Technion, and four additional students from the Faculty of Chemical Engineering and the Faculty of Biotechnology and Food Engineering. 

It was supported by the Israel Science Foundation, the Israel Cancer Research Fund, the Stuart & Linda Resnick Sustainability and Catalysis Institute at the Technion, the Russell Berrie Nanotechnology Institute, the Bruce & Ruth Rappaport Cancer Research Institute, the Alon Fellowship, the Noam Seiden Fellowship in Nanotechnology and Optoelectronics, and the European Research Council’s “Milkosomes” grant.

Is there a difference in brain structure between men and women? If we were to find such a difference in a single neuron, would it matter?

One of the most useful models for studying these questions is the nematode Caenorhabditis elegans (C. elegans). This tiny worm has several characteristics that make it an excellent research model, one of which is that every cell in its body has a predetermined identity and lineage.

Like humans, C. elegans has two sexes. However, instead of male and female, the two sexes of this worm are male and hermaphrodite—a self-fertilizing individual capable of producing both male and female gametes (sperm and eggs), allowing it to reproduce without a partner.

Researchers from the Faculty of Biology at the Technion-Israel Institute of Technology have examined these sex-specific differences (sexual dimorphism) in C. elegans, and uncovered surprising findings.

The study, published in Proceedings of the National Academy of Sciences, was led by Dr. Yael Iosilevskii and Dr. Menachem Katz from Prof. Beni Podbilewicz’s Lab, in collaboration with Prof. David H. Hall of the Albert Einstein College of Medicine in New York.

The researchers discovered that a highly branched neuron called PVD, previously characterized in hermaphrodites, forms a different structure in males. Moreover, while in hermaphrodites, PVD functions primarily in pain sensing, in males, it has an additional role during mating; when its development is disrupted, males are slower and less coordinated. This discovery provides a unique example of sexual dimorphism in the structure of a single neuron, which is linked to behavioral differences.

‘Male’ vs. ‘female’ brains

It has long been established that men and women have different susceptibilities to various neurological disorders. For example, women are more prone to depression, while men have a higher risk of Parkinson’s disease. Could these differences be linked to the structure of individual neurons in the brain? This is difficult to determine due to the sheer number of neurons in the human brain—approximately 75 billion.

Even if a difference were found between the sexes in just one neuron, pinpointing its exact contribution would be challenging, as even the simplest tasks require a multitude of intricately interconnected neurons.

To explore the significance of a single neuron’s spatial structure, researchers have turned to the nematode C. elegans, just one millimeter long. A unique feature of this organism is that the identity of all 302 neurons in the hermaphrodite is invariant, allowing scientists to map their placement, spatial structure, and connections fully.

“Furthermore,” said Prof. Podbilewicz, “within the nematode population, there are also male individuals with distinct anatomy, additional neurons, and different behavior. This makes for a remarkably simple system where we can directly ask: What determines the structure of each neuron in the nervous system? Are there sex-specific differences, and do they affect behaviour?”

To answer these questions, Dr. Iosilevskii and Dr. Katz studied the development of the sensory neuron PVD. This neuron has a highly branched structure, with repetitive subunits resembling a candelabra (“menorahs”). Its distinctive shape and its development during the organism’s maturation have made it a research focus for over a decade. While much is known about its development in hermaphrodites, PVD had not been characterized in males or examined for sexual dimorphism.

The Technion researchers set out to determine whether male PVD neurons develop a different spatial structure and whether this difference influences a male’s behavior.

When examining PVD development in males, the researchers found that its menorah-like structures remained consistent across both sexes. However, they were surprised to discover that in adult males, PVD extends additional branches into the tail fan—a specialised male organ used for mating. Along with Prof. Hall, they found that these branches are entirely separate from the previously known neurons in this region.

This unique branching of PVD does not occur during the tail fan’s development but emerges immediately afterward, during the final molt from juvenile to adult. Shortly afterwards, the male begins to exhibit his sex-specific mating behavior. The researchers further discovered that when PVD does not develop properly, this mating behavior is impaired, causing males to become slower and less coordinated.

This discovery of sexual dimorphism in the structure of a single sensory neuron, which also relates to male-specific behaviour, provides a unique example in C. elegans and opens new avenues for studying sex-based neural differences. The discovery is expected to enhance our understanding of how such sexual dimorphisms alter responses both at the single-cell level and the behaviour of the whole organism.

Haifa-based Pluri entered into an exclusive collaboration with Ukrainian umbilical cord blood bank Hemafund last month to stockpile and distribute its placental expanded cell therapy, PLX-R18, as a potential treatment for life-threatening radiation sickness. Under the terms of the collaboration agreement with Hemafund, Pluri will produce and supply an initial capacity of 12,000 doses of its PLX-R18, sufficient to treat 6,000 people. Pluri was founded in 2001 by Technion alumnus Shai Meretzki, who made use of a stem cell patent developed during his Ph.D. studies in the Rappaport Faculty of Medicine

Amid rising threat from Russia, Pluri partners with Ukrainian blood bank to stockpile remedy for deadly radiation poisoning that uses cells grown from donated placentas.

About two weeks after a Russian drone struck the cover built to contain radiation at the Chernobyl nuclear power plant, Israeli biotech firm Pluri, a developer of placenta-based cell technology, landed an agreement to help Ukraine develop an emergency response to life-threatening radiation sickness in case of a radiological event.

The nearly three-year war between Russia and Ukraine has underscored the ever-rising threat of nuclear fallout amid repeated shelling of a nuclear power plant in southern Ukraine and Russian President Vladimir Putin’s threat to use nuclear weapons.

Last month, Haifa-based Pluri (formerly Pluristem) entered into an exclusive collaboration with Ukrainian umbilical cord blood bank Hemafund to stockpile and distribute its placental expanded cell therapy, PLX-R18, as a potential treatment for life-threatening radiation sickness.

The condition, also known as hematopoietic acute radiation syndrome (H-ARS), occurs when a person is exposed to high levels of ionizing radiation, such as during a nuclear attack or accident. Destruction of the bone marrow and blood cells ensues, leading to severe anemia, infection and bleeding.

Death can occur in four to eight weeks if effective treatment is not received.

Over the past two decades, Pluri has focused on developing 3D technology to mimic how living cells communicate and interact with the body to grow and expand. The biotech firm harnesses stem cells extracted from placenta donated by healthy women who have given birth by cesarean section in hospitals around the country. The single placenta cells are cultivated in a proprietary 3D bioreactor system with a micro-environment that resembles and simulates the human body.

“Cells are the building blocks of life — everything in our world starts and ends with cells,” Pluri chief commercial officer Nimrod Bar Zvi told The Times of Israel. “These tiny cells are amazing creatures that exist in almost any aspect of our life, whether we get them from humans, animals, or plants.”

Bar Zvi explained that once placed inside bioreactors, the stem cells latch onto scaffolds and start “to communicate with each other and proliferate, similar to what happens in the human body, and they are secreting proteins as we mimic the conditions of the natural environment they need to expand.”

Using the 3D cell expansion technology method, a single placenta cell can be multiplied into billions of distinct cells, Pluri said. As a result, cells from a single placenta can treat more than 20,000 patients.

“In the end of that process, we have a vial that contains a specific amount of our placental expanded cells depending on the dosage needed for the patient,” said Bar Zvi. “Once the vial with the cells is injected into the muscle, it stimulates the human body’s own capabilities for the reactivation and regeneration of blood cells, mitigates the effects of radiation exposure and we see the recovery happening.”

Pluri says that its cell-based treatment stimulates and regenerates the production of all three types of blood cells produced in the blood marrow: white and red blood cells as well as platelets.

Under the terms of the collaboration agreement with Hemafund and subject to receiving external government and private sector funding, the veteran biotech firm will produce and supply an initial capacity of 12,000 doses of its PLX-R18, sufficient to treat 6,000 people. The doses will be stored and managed by Hemafund and delivered to medical institutions across Ukraine in case of need.

“At present, there are no other treatments for radiation poisoning that use stem cells taken from a placenta as far as we know,” said Bar Zvi. “The ability to treat acute radiation exposure with cell therapy and to scale it up for mass production is where we are unique since we can supply thousands and thousands of vials to large numbers of people.”

Pluri is publicly traded on the Nasdaq as well as the Tel Aviv Stock Exchange. At the Matam Advanced Technology Park in Haifa, the biotech firm operates a cell therapy production facility, which it says has been designed to handle large-scale manufacturing of cellular therapies. It could also be mobilized for mass production to respond to global emergencies if nuclear threats escalate. The firm employs a total of 130 people.

Pluri and Hemafund said they will also seek to advance clinical trials to register the PLX-R18 therapy as a radiation countermeasure and obtain necessary regulatory approvals from Ukraine’s health ministry. The collaboration is expected to potentially generate over $100 million in value for both parties.

“Our cryostorage facilities and logistics network position us well to support the introduction of PLX-R18 as a potential vital tool for radiation emergency preparedness in Ukraine,” said Hemafund founder Yaroslav Issakov. “While we hope such treatments remain precautionary, our goal is to stand ready to distribute this potential therapy in the event of an emergency.”

Pluri uses patented technology to create cell-based pharmaceutical and food products. (Courtesy)

Pluri said that its PLX-R18 has been safely tested in both humans and animals. Results from a series of recent studies in animals of its stem cell therapy after radiation exposure demonstrated an increase in survival rates from 29% in the placebo group to 97% in the treated group.

The administration of PLX- R18 as a prophylactic measure 24 hours before radiation exposure, and again 72 hours after exposure, resulted in an increase in survival rates, from 4% in the placebo group to 74% in the treated group.

The FDA previously cleared an Investigational New Drug application for PLX-R18 for the treatment of radiation sickness and granted it Orphan Drug Designation. This means that should a nuclear event take place, Pluri could use the drug to treat victims.

Pluri’s bioreactors for the cultivation of cell-based therapy products. (Courtesy/Michael Brikman)

In July 2023, Pluri was awarded a three-year $4.2 million contract by the US National Institutes of Health to continue to develop its novel treatment for deadly radiation sickness and to collaborate with the US Department of Defense’s Armed Forces Radiobiology Research Institute in Maryland.

As part of the contract, the NIH’s National Institute of Allergy and Infectious Diseases (NIAID) will fund final studies required to complete the biotech firm’s application for FDA approval to market its PLX-R18 therapy.

Pluri hopes that the approval would make it eligible for purchase by the US Strategic National Stockpile — the country’s repository of critical medical supplies — as a medical countermeasure for exposure to nuclear radiation.

Unlike artificial language models, which process long texts as a whole, the human brain creates a “summary” while reading, helping it understand what comes next.

In recent years, large language models (LLMs) like ChatGPT and Bard have revolutionized AI-driven text processing, enabling machines to generate text, translate languages, and analyze sentiment. These models are inspired by the human brain, but key differences remain.

A new Technion-Israel Institute of Technology study, published in Nature Communications, explores these differences by examining how the brain processes spoken texts. The research, led by Prof. Roi Reichart and Dr. Refael Tikochinski from the Faculty of Data and Decision Sciences. It was conducted as part of Dr. Tikochinski’s Ph.D., co-supervised by Prof. Reichart at Technion and Prof. Uri Hasson at Princeton University.

The study analyzed fMRI brain scans of 219 participants while they listened to stories. Researchers compared the brain’s activity to predictions made by existing LLMs. They found AI models accurately predicted brain activity for short texts (a few dozen words). However, for longer texts, AI models failed to predict brain activity accurately.

The reason? While both the human brain and LLMs process short texts in parallel (analyzing all words at once), the brain switches strategies for longer texts. Since the brain cannot process all words simultaneously, it stores a contextual summary—a kind of “knowledge reservoir”—which it uses to interpret upcoming words.

In contrast, AI models process all previously heard text at once, so they do not require this summarization mechanism. This fundamental difference explains why AI struggles to predict human brain activity when listening to long texts.

To test their theory, the researchers developed an improved AI model that mimics the brain’s summarization process. Instead of processing the entire text at once, the model created dynamic summaries and used them to interpret future text. This significantly improved AI predictions of brain activity, supporting the idea that the human brain is constantly summarizing past information to make sense of new input.

This ability allows us to process vast amounts of information over time, whether in a lecture, a book, or a podcast. Further analysis mapped brain regions involved in both short-term and long-term text processing, highlighting the brain areas responsible for context accumulation, which enables us to understand ongoing narratives.

Prof. Shai Shen-Orr of the Ruth and Bruce Rappaport Faculty of Medicine showcased his lab’s trailblazing efforts in harnessing computational tools and innovative methodologies to redefine our understanding of the immune system. A leading immunologist and director of the Zimin Institute of AI Solutions in Healthcare at the Technion and the new Technion Institute for Healthy Aging, his work spans from developing metrics like “immune age” to spearheading global health projects, promising transformative implications for medicine.

Immune Age and Predictive Medicine

One of Prof. Shen-Orr’s standout contributions is the concept of immune age, a metric that quantifies the immune system’s state. This marker has shown predictive power for various health outcomes, including cardiovascular disease, paving the way for early diagnosis and intervention.

“Your immune system is a learning system,” Shen-Orr explained, emphasizing how the immune system evolves over time and adapts to environmental challenges. “By understanding an individual’s immune age, health care providers can better predict and manage potential health issues, leading to more personalized and effective treatments.”

Developed using advanced mass cytometry and machine learning, this metric represents a leap in precision medicine, shifting the focus from general health indicators to immune-specific markers.

Bridging the Data-Insight Gap With AI

Prof. Shen-Orr’s research tackles a critical bottleneck in biomedical science: the gap between vast amounts of data and actionable insights. He has pioneered computational disease models that leverage artificial intelligence to improve drug development efficiency. For example, his lab’s algorithm, “Found in Translation,” enhances the predictability of findings from animal models, like mice, to human systems by up to 50%. “We train the computer system to learn the difference between a mouse and a human,” he said.

“Most drugs fail during development. It costs about $2.5 billion to bring a single drug to market, primarily because of failed trials. By improving the translational accuracy between species, we can reduce time, cost, and animal use significantly.”

The Human Immunome Project: A Global Collaboration

One of his most ambitious initiatives, Shen-Orr is co-chief science officer of the Human Immunome Project. This global nonprofit aims to map baseline immune variations across populations, genders, and geographic regions, addressing a fundamental gap in immunological research. The project holds the potential to revolutionize vaccine development and personalized immunotherapies by understanding how different immune systems respond to treatments.

An example that underscores this need is the malaria vaccine. While it demonstrated over 90% efficacy in trials conducted in the U.S., its effectiveness dropped to less than 20% in African populations, a disparity attributed to baseline immune variations.

“We’re at a singularity moment in immunology,” Shen-Orr said. “The tools to measure the immune system comprehensively, along with AI capabilities, have matured. Now is the time to leverage them for global impact.”

From Academia to Real-World Applications

The Technion’s emphasis on translational research is evident in Shen-Orr’s dual roles as an academic leader and entrepreneur. He co-founded CytoReason, a company that integrates AI-driven disease models into pharmaceutical research and development. The platform has already gained traction with leading industry players like Pfizer and Sanofi, demonstrating its potential to streamline drug development and reduce costs.

Moreover, his collaboration with other Technion researchers is pushing the boundaries of innovation. For instance, partnerships exploring the impact of diet on immune health are underway, aiming to create tailored nutritional solutions for aging populations.

Shen-Orr also advocates for equipping biologists and clinicians with computational and data science skills to harness the explosion of data in immunology. The Technion’s curriculum now incorporates quantitative thinking from the first year of medical school, preparing future physicians to engage with cutting-edge technologies.

Looking Ahead

Prof. Shen-Orr’s work exemplifies the Technion’s commitment to groundbreaking science with tangible societal benefits. By bridging biology, AI, and global collaboration, his research not only advances our understanding of the immune system but also lays the foundation for a future where medicine is predictive, personalized, and precise.

His collaborative efforts with institutions like Stanford University and the National Institutes of Health aim to deepen our understanding of immune health and develop new diagnostic tools and therapies. “We are studying the effects of the environment and pollution on immune health,” for example.

As he puts it, “We’re moving toward a world with less trial and error and more informed decisions in medicine. The immune system, with all its complexity, is the key to unlocking this future.”

From predictive medicine to global health initiatives, Shen-Orr’s work is paving the way for a deeper understanding of the immune system and its applications in improving human health. As the field continues to evolve, the Technion remains at the cutting edge, driving innovation and collaboration in immunology research.

Proteins, the pillars of cellular function, often assemble into “complexes” to fulfill their functions. A study by the University of Geneva (UNIGE) and the Weizmann Institute, in collaboration with the Technion, reveals why this assembly often begins during the very process of protein synthesis or “birth.”

These early interactions involve proteins whose stability depends on their association. They can be compared to a couple in which each partner supports the other. This model paves the way for new strategies to understand and correct assembly errors, which are often associated with pathologies, including neurodegenerative disorders and certain cancers. The findings are published in the journal Cell.

Proteins are large molecules composed of a chain of amino acids. They are produced by the ribosome, a cellular “machine” that reads the instructions contained in messenger RNAs. Once the protein is formed, interactions between the amino acids induce the chain to fold onto itself and adopt a specific structure. While some proteins function independently, many must assemble with specific partners into complexes to fulfill their roles.

The formation of these complexes is a delicate process. If proteins fail to find their partners or fold incorrectly, this can lead to cellular dysfunction and pathologies such as Alzheimer’s disease or certain cancers. Until very recently, scientists believed that proteins only formed complexes after being fully synthesized (post-translational assembly).

However, the recent study revealed that assembly between nascent proteins—co-translational assembly—is widespread. This study identified thousands of proteins involved but did not determine the specific pairs of proteins formed or the molecular signatures underlying this early recognition.

Thousands of protein structures analysed

The group led by Emmanuel Levy, a full professor in the Department of Molecular and Cellular Biology at the UNIGE Faculty of Science—previously a professor at the Weizmann Institute—in collaboration with the group of Ayala Shiber, a professor at the Technion, focuses on the fundamental principles governing protein self-organization. In other words, these scientists aim to identify the general rules of protein assembly.

For this study, the team analyzed a list of proteins involved in co-translational assembly. By comparing their structures to those of proteins that assemble after translation, they were able to establish fundamental differences between these two mechanisms

“Our bioinformatics analyses revealed that proteins interacting with their partners while still being synthesized tend to be unstable when isolated. These proteins depend on their partners and if they do not find it, they adopt a wrong shape and get degraded,” explains Saurav Mallik, a researcher at the Weizmann Institute and co-first author of the study.

A predictive model

“Using this approach, we developed a model based on a large corpus of structural data, using both experimentally determined structures and those predicted by the artificial intelligence software AlphaFold. Our model leveraged structural properties of a complex to predict whether it associated co- or post-translationally,” add Johannes Venezian and Arseniy Lobov, co-first authors of the study. The scientists notably discovered that binding sites are exposed early in these proteins, enabling them to interact with their partner shortly after emerging from the ribosome.

These predictions were validated using experimental data focused on several proteins. “These findings pave the way for a better understanding of protein assembly within cells and highlight the global impact of protein structure on the regulation of their synthesis,” says Levy.

Many diseases, including neurodegenerative disorders and certain cancers, are linked to misfolded proteins or defective complexes. By understanding the rules of co-translational assembly, scientists could develop strategies to prevent these errors and design new therapeutic approaches to correct them.

What if we could provide groundbreaking accessibility solutions to people with disabilities?

How can technology be harnessed to offer unique solutions to people with disabilities? The Technion has designed a new course to empower students to do just that through social-technological entrepreneurship. Open to all Technion students as well as University of Haifa physiotherapy students, the course fosters interdisciplinary collaboration to address real-world challenges.

Students will explore topics such as accessibility, the psychology of people with disabilities, and principles from biomedical engineering, physiotherapy, and occupational therapy. Visits to Loewenstein Rehabilitation Hospital and Sheba Medical Center will provide firsthand insights into rehabilitation needs, enriching the learning experience.

Dr. Yacov Malinovich, the course leader, highlighted its timely significance: “Awareness of the needs of disabled people has increased, and this has become even more important in light of the ongoing war. Developing suitable technologies for rehabilitation offers students and engineers an opportunity to directly improve people’s well-being. Israel has extensive knowledge in this field, with examples like unique wheelchairs, emergency bracelets, and special surfboards.”

Dr. Malinovich, a founder of Haifa3D, brings expertise in designing assistive devices for individuals with upper limb disabilities. Haifa3D’s impactful work includes creating robotic hands for children and collaborating with the Technion’s Biorobotics and Biomechanics Lab to develop customized solutions.

“The new course will feature guests from various academic and rehabilitation institutions,” explained Dr. Malinovich. “By connecting with rehabilitation centers and individuals with disabilities, we aim to create technological solutions that truly assist those in need. Each student team will submit a product as their final project.”

Held in the Faculty of Mechanical Engineering, the course is a collaboration between t:hub – the Technion Innovation and Entrepreneurship Hub, the University of Haifa’s Physiotherapy Department, and the Technion Social Incubator. Offering six academic credits, it provides students with hands-on experience to develop innovative solutions that can transform lives.

“Stay positive,” we’re told when suffering from an illness. It’s easy to dismiss such comments as platitudes from well-meaning friends. But Technion scientists have demonstrated that activation of the brain’s reward system can boost recovery from a heart attack. Establishing the connection between the two can potentially lead to therapeutic avenues for intervention.

“It’s time that both researchers and clinicians take the link between psychology and physiology seriously,” said Technion Associate Professor Asya Rolls, a psychoneuroimmunologist and pioneer in mind-body interactions.

Scientists have previously shown that the emotional state can influence the course of disease following a heart attack. But until now, the underlying physiological mechanisms were not well understood.

Prof. Rolls worked with renowned cardiac researcher Professor Lior Gepstein and Hedva Haykin, Ph.D. ’23, in the Ruth and Bruce Rappaport Faculty of Medicine to manipulate the area of the brain responsible for inducing positive emotion and motivation in heart-diseased mice. The stimulation resulted in a favorable immune response that helped heal cardiac scarring, increased blood vessel formation, and improved cardiac performance. Their work, published in Nature Cardiovascular Research, found that these beneficial effects on the heart are mediated in part by the secretion of C3, a protein of the body’s “complement system,” which is the front line of defense for the immune system.

Since there are many non-invasive methods for stimulating the reward system in humans, such as drugs, biofeedback, and focused ultrasound, the team’s discovery could have meaningful future implications for the treatment of heart attacks.

“You can call something psychosomatic, but in the end, it’s somatic,” said Prof. Rolls. “How long can we ignore what is there?”

Prof. Asya Rolls is part of a growing group of scientists who are mapping out the brain’s control over the body’s immune system responses. Her earlier research has made inroads into understanding and treating autoimmune diseases such as Crohn’s disease, and has even shown that triggering the brain’s reward system can stop tumor growth in mice.

Prof. Lior Gepstein is the director of the Cardiology Department at Rambam Health Care Campus and an academic staff member in the Technion’s Faculty of Medicine. His diverse research has explored the generation of heart tissue from human embryonic stem cells, treatment for cardiac arrythmias, and the development of a biological pacemaker.

Dr. Hevda Haykin recently completed her doctoral studies under the supervision of Profs. Rolls and Gepstein, and was awarded the Israel Heart Society’s J.J. Kellerman Young Investigator Award for 2024.