May 21, 2025
H2Pro’s Decoupled Water Electrolysis Technology Highlighted in Nature Reviews Clean Technology for Advancing Green Hydrogen Production

Nature Reviews Clean Technology spotlights Decoupled Water Electrolysis (DWE) – a novel approach to green hydrogen production pioneered by H2Pro that solves key challenges in direct connection to solar and wind.

For decades, water electrolysis has remained stagnant, relying on conventional technologies like alkaline and PEM, where ongoing development yields only incremental gains in overcoming the barriers to affordable green hydrogen production. Now, a new category is gaining global recognition: DWE – an approach that tackles these challenges with fresh thinking. At the center of its rise is Israeli climate tech company H2Pro, whose bold reimagining of electrolysis is featured in a landmark review in Nature Reviews Clean Technology.

The article highlights a critical challenge: conventional electrolyzers struggle to operate safely and efficiently under fluctuating solar and wind power. Membranes, gas crossover risks, and operational constraints limit their ability to respond dynamically to intermittent renewable energy, driving up costs and limiting deployment.

“To unlock the full value of cheap renewable electricity, we need electrolysis that can go behind the meter and be fit for green – hyper-flexible, ultra-low cost, seamless on/off, and efficient across a wide range of power loads,” said Rotem Arad, CBO of H2Pro and article contributor. “By splitting hydrogen and oxygen into two distinct steps, mediated by a proprietary redox cycle, that’s exactly what H2Pro’s DWE does.”

The review was co-authored by Prof. Avner Rothschild and Dr. Guilin Ruan (Technion – Israel Institute of Technology), Dr. Fiona Todman and Prof. Mark D. Symes (University of Glasgow), Dr. Tom Smolinka (Fraunhofer-Institut für Solare Energiesysteme ISE), Prof. Jens Oluf Jensen (DTU – Technical University of Denmark), Gilad Yogev and Rotem Arad (H2Pro). Together, they examine the chemistry, system architectures, and commercial implications of decoupling hydrogen and oxygen — and validate growing consensus that DWE could be key to scaling green hydrogen cost-effectively.

“When we conducted the groundbreaking Technion research that became the foundation for H2Pro, we knew incremental improvements to legacy electrolysis weren’t enough,” said Dr. Hen Dotan, CTO and co-founder of H2Pro. “We let go of outdated assumptions — like the belief that hydrogen and oxygen must be produced simultaneously — and ended up pioneering not just a breakthrough technology, but a new mindset around electrolysis. We’re thrilled to see DWE gaining momentum and honored to be featured alongside the esteemed researchers advancing the field.”

H2Pro is now preparing to deploy the world’s first decoupled electrolysis system in the field — a major step in translating science into scalable commercial infrastructure. Scheduled for installation this year in Tziporit, Israel, it will also be the country’s first green hydrogen project.

 

Source